Transfontanelle photoacoustic imaging: ultrasound transducer selection analysis



1 Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
2 Department of Physics, University of Isfahan, Isfahan 81746-73441, Iran
3 Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
4 These authors have contributed equally


Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.


1. H. L. Cohen and N. Blitman, “Neurosonography of the infant: diagnosis of abnormalities,” in Ultrasonography of
the Prenatal and Neonatal Brain 259–285 (1996).
2. D. J. Rubens, “Diagnostic ultrasound: a logical approach,” Radiology 208(3), 640 (1998).
3. M. Heron, P. D. Sutton, J. Xu, S. J. Ventura, D. M. Strobino, and B. Guyer, “Annual summary of vital statistics:
2007,” Pediatrics 125(1), 4–15 (2010).
4. T. Lekic, D. Klebe, R. Poblete, R. Krafft, B. Rolland, J. Tang, and H. Zhang, “Neonatal brain hemorrhage (NBH) of
prematurity: translational mechanisms of the vascular-neural network,” Curr. Med. Chem. 22(10), 1214–1238 (2015).
5. D. R. Patel, M. Neelakantan, K. Pandher, and J. Merrick, “Cerebral palsy in children: a clinical overview,” Trans.
Pediatr. 9(S1), S125–S135 (2020).
6. B.J. Lipsett and K. Steanson, “Anatomy, head and neck, fontanelles,” In StatPearls [Internet], StatPearls Publishing:
7. K. Nakashima and B. de Crombrugghe, “Transcriptional mechanisms in osteoblast differentiation and bone formation,”
Trends in Genetics 19(8), 458–466 (2003).
8. N. K. Kaneshiro, “Large fontanelles,” Available online:
9. R. Llorens-Salvador and A. Moreno-Flores, “The ABCs of transfontanellar ultrasound and more,” Radiologia 58,
129–141 (2016).
10. A. Tsai, R. Lasky, S. John, P. Evans, and K. Kennedy, “Predictors of neurodevelopmental outcomes in preterm infants
with intraparenchymal hemorrhage,” J. Perinatol. 34(5), 399–404 (2014).
11. B. Y. Huang and M. Castillo, “Hypoxic-ischemic brain injury: imaging findings from birth to adulthood,”
Radiographics 28(2), 417–439 (2008).
12. S. C. Carson, B. S. Hertzberg, J. D. Bowie, and P. C. Burger, “Value of sonography in the diagnosis of intracranial
hemorrhage and periventricular leukomalacia: a postmortem study of 35 cases,” Am. J. Neuroradiol. 11(4), 677–683
13. J. Intrapiromkul, F. Northington, T. A. Huisman, I. Izbudak, A. Meoded, and A. Tekes, “Accuracy of head
ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and
susceptibility-weighted imaging,” J. Neuroradiol. 40(2), 81–88 (2013).
14. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron.
14(1), 171–179 (2008).
15. L.V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075),
1458–1462 (2012).
16. J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagn. Waves (Camb.)
147, 1–22 (2014).
17. J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
18. Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
19. R. Manwar, M. Hosseinzadeh, A. Hariri, K. Kratkiewicz, S. Noei, and N. M. Avanaki, “Photoacoustic signal
enhancement: towards utilization of low energy laser diodes in real-time photoacoustic imaging,” Sensors 18(10),
3498 (2018).
20. M. Zafar, K. Kratkiewicz, R. Manwar, and M. Avanaki, “Development of low-cost fast photoacoustic computed
tomography: system characterization and phantom study,” Appl. Sci. 9(3), 374 (2019).
21. A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki,
“Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
22. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
23. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8),
627–638 (2016).
24. K. Kratkiewicz, R. Manwar, A. Rajabi-Estarabadi, J. Fakhoury, J. Meiliute, S. Daveluy, D. Mehregan, and K. M.
Avanaki, “Photoacoustic/ultrasound/optical coherence tomography evaluation of melanoma lesion and healthy skin
in a swine model,” Sensors 19(12), 2815 (2019).

25. K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, HReview of
cost reduction methods in photoacoustic computed tomography,” In arXiv e-prints, 2019.
26. Rayyan Anwar, Karl Kratkiewicz, and Mohammed R. N. Avanaki, “Photoacoustic imaging: a promising alternative
to transcranial ultrasound,” Editorial Res. J. Photonics 2, 1 (2018).
27. M. Zafar, K. Kratkiewicz, R. Manwar, and M. Avanaki, “Low-cost fast photoacoustic computed tomography: phantom
study,” In Proceedings of Photons Plus Ultrasound: Imaging and Sensing 2019; p. 108785V.
28. M. Mozaffarzadeh, A. Mahloojifar, M. Orooji, S. Adabi, and M. Nasiriavanaki, “Double-stage delay multiply and
sum beamforming algorithm: application to linear-array photoacoustic imaging,” IEEE Trans. Biomed. Eng. 65(1),
31–42 (2018).
29. M. Mozaffarzadeh, A. Mahloojifar, M. Orooji, K. Kratkiewicz, S. Adabi, and M. Nasiriavanaki, “Linear-array
photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm,” J.
Biomed. Opt. 23(2), 026002 (2018).
30. P. Omidi, M. Zafar, M. Mozaffarzadeh, A. Hariri, X. Haung, M. Orooji, and M. Nasiriavanaki, “A novel dictionary-
based image reconstruction for photoacoustic computed tomography,” Appl. Sci. 8(9), 1570 (2018).
31. L. Mohammadi, H. Behnam, J. Tavakkoli, and M. Avanaki, “Skull’s photoacoustic attenuation and dispersion
modeling with deterministic ray-tracing: towards real-time aberration correction,” Sensors 19(2), 345 (2019).
32. B. Laviña, “Brain vascular imaging techniques,” Int. J. Mol. Sci. 18(1), 70 (2016).
33. M. Nasiriavanaki, J. Xia, H. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic
tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. 111(1), 21–26 (2014).
34. A. C. W. Constanciel Colas, C. Mougenot, T. Looi, S. Pichardo, and J. M. Drake, “Acoustic characterization of a
neonate skull using a clinical MR-guided high intensity focused ultrasound system for pediatric neurological disorder
treatment planning,” J. Ther. Ultrasound 3, P14 2014.
35. A. G. Noguera, Propagation of Ultrasound Through Freshly Excised Human Calvarium, University of Nebraska-
Lincoln, 2012.
36. J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics
1(1), 011003 (2014).
37. N. Meimani, N. Abani, J. Gelovani, and M. R. Avanaki, “A numerical analysis of a semi-dry coupling configuration
in photoacoustic computed tomography for infant brain imaging,” Photoacoustics 7, 27–35 (2017).
38. R. Manwar, K. Kratkiewicz, and K. Avanaki, “Overview of ultrasound detection technologies for photoacoustic
imaging,” Micromachines 11(7), 692 (2020).
39. B. D. Lindsey, E. D. Light, H. A. Nicoletto, E. R. Bennett, D. T. Laskowitz, and S. W. Smith, “The ultrasound
brain helmet: New transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial
imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 58(6), 1189–1202 (2011).
40. B. Ihnatsenka and A. P. Boezaart, “Ultrasound: Basic understanding and learning the language,” Int. J. Shoulder
Surg. 4(3), 55 (2010).
41. S. D. Vik, H. Torp, T. Follestad, R. Støen, and S. A. Nyrnes, “NeoDoppler: new ultrasound technology for continuous
cerebral circulation monitoring in neonates,” Pediatr. Res. 87(1), 95–103 (2020).
42. S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun.
10(1), 132–139 (2019).
43. B. A. Angelsen, H. Torp, S. Holm, K. Kristoffersen, and T. Whittingham, “Which transducer array is best?” European
J. Ultrasound 2(2), 151–164 (1995).
44. W. Lee and Y. Roh, “Ultrasonic transducers for medical diagnostic imaging,” Biomed. Eng. Lett. 7(2), 91–97 (2017).
45. T. L. Szabo and P. A. Lewin, “Ultrasound transducer selection in clinical imaging practice,” J. Ultrasound in Med.
32(4), 573–582 (2013).
46. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Phantom-based image quality test methods for
photoacoustic imaging systems,” J. Biomed. Opt. 22(9), 095002 (2017).
47. G. M. Ecury-Goossen, F. A. Camfferman, L. M. Leijser, P. Govaert, and J. Dudink, “State of the art cranial ultrasound
imaging in neonates,” J. Vis. Exp. 96, e52238 (2015).
48. S. Na, J. J. Russin, L. Lin, X. Yuan, P. Hu, K. B. Jann, L. Yan, K. Maslov, J. Shi, and D. J. Wang, “Massively parallel
functional photoacoustic computed tomography of the human brain,” Nat. Biomed. Eng. 2021, 1–9 (2021).
49. K. Kratkiewicz, R. Manwar, Y. Zhou, M. Mozaffarzadeh, and K. Avanaki, “Technical considerations in the Verasonics
research ultrasound platform for developing a photoacoustic imaging system,” Biomed. Opt. Express 12(2), 1050–1084
50. R.O. Bude and R. S. Adler, “An easily made, low-cost, tissue-like ultrasound phantom material,” J. Clin. Ultrasound
23, 271 (1995).
51. S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application
of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
52. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic
imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
53. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms
with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
54. Z. Lu, J. He, Y. Yu, Z. Li, Z. Li, and J. Gong, “Measurement of lateral ventricle volume of normal infant based on
magnetic resonance imaging,” Chin. Neurosurg. J. 5(1), 1–6 (2019).
55. T. F. Saxon, J. Colombo, E. L. Robinson, and J. E. Frick, “Dyadic interaction profiles in infancy and preschool
intelligence,” J. School Psychol. 38(1), 9–25 (2000).
56. S.-V. Bodea and G. G. Westmeyer, “Photoacoustic neuroimaging-perspectives on a maturing imaging technique and
its applications in neuroscience,” Front. Neurosci. 15, 655247 (2021).