Photoacoustic tomography to assess
acute vasoactivity of systemic

Huda, Kristieª; Lawrence, Dylanª; Lindsey, Sarah; Bayer, Carolynª*


a Dept. of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans,
LA 70118, USA
b Dept. of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue,
New Orleans, LA 70112, USA


Vasoactivity is an important physiological indicator of cardiovascular health which is frequently measured using ex vivo vessels to determine functional mechanisms and evaluate pharmacological responses. Currently, there are no imaging methods available to assess vasoactivity in multiple vascular beds of living animals noninvasively. In this work, we have developed methods to use photoacoustic tomography to assess vasoactivity in vivo in systemic vasculature of living animals. A spherical-view photoacoustic tomography system was used to monitor acute vasodilation in the whole abdomen of a pregnant mouse in response to injection of G-1. After 3D image reconstruction, the diameter of the iliac artery and photoacoustic signal intensity of a placenta over time was measured. The artery and placenta had differential response to the vasodilator G-1. We validated the observed vasodilation of artery by monitoring the change in cross-sectional diameter of an individual artery using standard B-mode ultrasound imaging


[1] Sitia, S., Tomasoni, L., Atzeni, F., Ambrosio, G., Cordiano, C., Catapano, A., Tramontana, S., Perticone, F., Naccarato, P., Camici, P., Picano, E., Cortigiani, L., Bevilacqua, M., Milazzo, L., Cusi, D., Barlassina, C., SarziPuttini, P., Turiel, M., “From endothelial dysfunction to atherosclerosis,” Autoimmunity Reviews 9(12), 830-834 (2010).
[2] Park, J., Charbonneau, F., Schiffrin, E., “Correlation of endothelial function in large and small arteries in human essential hypertension.,” Journal of Hypertension 19(3), 415-420 (2001).
[3] Vita, J. A., Hamburg, N. M., “Does endothelial dysfunction contribute to the clinical status of patients with peripheral arterial disease?,” Can J Cardiol 26 Suppl A(45A-50A (2010).
[4] Calles-Escandon, J., Cipolla, M., “Diabetes and endothelial dysfunction: a clinical perspective,” Endocr Rev 22(1), 36-52 (2001).
[5] Zoccali, C., “The endothelium as a target in renal diseases,” J Nephrol 20 Suppl 12(S39-44 (2007).
[6] Bevan, J. A., Osher, J. V., “A direct method for recording tension changes in the wall of small blood vessels in vitro,” Agents Actions 2(5), 257-260 (1972).
[7] Halpern, W., Osol, G., Coy, G. S., “Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system,” Ann Biomed Eng 12(5), 463-479 (1984).
[8] Lindsey, S., Carver, K., Prossnitz, E., Chappell, M., “Vasodilation in Response to the GPR30 Agonist G-1 is Not Different From Estradiol in the mRen2.Lewis Female Rat,” Journal of Cardiovascular Pharmacology 57(5), 598- 603 (2011).
[9] Celermajer, D. S., Sorensen, K. E., Gooch, V. M., Spiegelhalter, D. J., Miller, O. I., Sullivan, I. D., Lloyd, J. K., Deanfield, J. E., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” Lancet 340(8828), 1111-1115 (1992).
[10] Schuler, D., Sansone, R., Freudenberger, T., Rodriguez-Mateos, A., Weber, G., Momma, T., Goy, C., Altschmied, J., Haendeler, J., Fischer, J., Kelm, M., Heiss, C., “Measurement of Endothelium-Dependent Vasodilation in Mice-Brief Report,” Arteriosclerosis Thrombosis and Vascular Biology 34(12), 2651-U2176 (2014).
[11] Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., Struijker-Boudier, H., Arteries, E. N. f. N.-i. I. o. L., “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur Heart J 27(21), 2588-2605 (2006).
[12] Xia, J., Yao, J., Wang, L. V., “Photoacoustic tomography: principles and advances,” Electromagn Waves (Camb) 147(1-22 (2014).
[13] Li, M., Oh, J., Xie, X., Ku, G., Wang, W., Li, C., Lungu, G., Stoica, G., Wang, L., “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proceedings of the Ieee 96(3), 481-489 (2008).
[14] Lungu, G., Li, M., Xie, X., Wang, L., Stoica, G., “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion.,” Journal of Nutrition 137(1), 278S-279S (2007).
[15] Ku, G., Wang, X., Xie, X., Stoica, G., Wang, L., “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Applied Optics 44(5), 770-775 (2005).
[16] Kruger, R. A., Lam, R. B., Reinecke, D. R., Del Rio, S. P., Doyle, R. P., “Photoacoustic angiography of the breast,” Med Phys 37(11), 6096-6100 (2010).
[17] Karlas, A., Fasoula, N., Paul-Yuan, K., Reber, J., Kallmayer, M., Bozhko, D., Seeger, M., Eckstein, H., Wildgruber, M., Ntziachristos, V., “Cardiovascular optoacoustics: From mice to men – A review,” Photoacoustics 14(19-30 (2019).
[18] Zemp, R., Song, L., Bitton, R., Shung, K., Wang, L., “Realtime Photoacoustic Microscopy of Murine Cardiovascular Dynamics,” Optics Express 16(22), 18551-18556 (2008).
[19] Taruttis, A., Herzog, E., Razansky, D., Ntziachristos, V., “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Optics Express 18(19), 19592-19602 (2010).
[20] Hu, S., Rao, B., Maslov, K., Wang, L., “Label-free photoacoustic ophthalmic angiography,” Optics Letters 35(1), 1-3 (2010).
[21] de la Zerda, A., Paulus, Y., Teed, R., Bodapati, S., Dollberg, Y., Khuri-Yakub, B., Blumenkranz, M., Moshfeghi, D., Gambhir, S., “Photoacoustic ocular imaging,” Optics Letters 35(3), 270-272 (2010).
[22] Hennen, S., Xing, W., Shui, Y., Zhou, Y., Kalishman, J., Andrews-Kaminsky, L., Kass, M., Beebe, D., Maslov, K., Wang, L., “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Experimental Eye Research 138(153-158 (2015).
[23] Ermilov, S., Su, R., Conjusteau, A., Anis, F., Nadvoretskiy, V., Anastasio, M., Oraevsky, A., “Three-Dimensional Optoacoustic and Laser-Induced Ultrasound Tomography System for Preclinical Research in Mice: Design and Phantom Validation,” Ultrasonic Imaging 38(1), 77-95 (2016).
[24] Li, C., Aguirre, A., Gamelin, J., Maurudis, A., Zhu, Q., Wang, L., “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” Journal of Biomedical Optics 15(1), (2010).
[25] Huda, K., Wu, C., Sider, J., Bayer, C., “Spherical-view photoacoustic tomography for monitoring in vivo placental function,” Photoacoustics 20((2020).
[26] Brecht, H., Su, R., Fronheiser, M., Ermilov, S., Conjusteau, A., Oraevsky, A., “Whole-body three-dimensional optoacoustic tomography system for small animals,” Journal of Biomedical Optics 14(6), (2009).
[27] Fredette, N., Meyer, M., Prossnitz, E., “Role of GPER in estrogen-dependent nitric oxide formation and vasodilation,” Journal of Steroid Biochemistry and Molecular Biology 176(65-72 (2018).
[28] Lindsey, S., Cohen, J., Brosnihan, K., Gallagher, P., Chappell, M., “Chronic Treatment with the G ProteinCoupled Receptor 30 Agonist G-1 Decreases Blood Pressure in Ovariectomized mRen2.Lewis Rats,” Endocrinology 150(8), 3753-3758 (2009).
[29] Xu, M., Wang, L., “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” Ieee Transactions on Medical Imaging 21(7), 814-822 (2002).