PhotoSound SDK 1A user manual

Contents
INETOTUCTION ...ttt e e e e e et e e e e e e e e e r e e e e e eeas 5
Working with the PhotoSoundClassesClassLibrary.dll.............cccoooiiiiiiiiiiiins 7...
Getting started iN MATLAB. ..o e e e e e aaaeas T.......
Getting Started in Visual Studio.CH........coooeiiiii e 13....
Controlling Data Acquisition in MATLAB..........oovviiiiiir e 16...
Controlling Data Acquisition in LADVIEM..............ouuuiiiiiiiiiiieeess e 19..
Controlling Data Acquisition in Visual Studia.C#.............ccccceeiiiiiiiiiiiiiiiieeeeeen 22..
Recording data to a File in MATLAB. ... 26....
Recording Data to a File in Visual Studia.C#.............ooeeviiiiiiiiiiiiiiieeeee e 30...
ADC AFES5818 setup in MATLAB.....coiiiii e 34....
ADC AFES818 setup in LADVIEWV..........cooiiiiiiiiiieeeee e 37....
ADC AFE5818 setup in Visual Studio.CH..........uuuuiiiiiiiiiiiieec e, 38...
ADC AFE5832 setup in Matlab.............coooviiiiiieee AL
AFES832 setup in LADVIEW. ... 45....
AFES832 setup in Visual StUdio.Cf.........oooiiiiiiiiiiieeeeee e 46....
Real-time data processing in MATLAB.uuii e 47....
Real-time data processing in LADVIEW...........coooiiiiiiii e 50...
Real-time data processing in ViSUAL.CH..........ooooiiiiiiiiii e 52...
PhotoSoundClasses.dll Class Library Reference...........ccccvvviiiiiiiiiieeiicieieeeeeeeiiin! 54..
(@221 o 10 [(o3 F= 13RS 5M.......
(70 o1 110 U] £ =3P PPTUUPPPIPPRIN 54.......
SF= 101 o1 [STy Mo OF= o | (1 | =SSP 54......
FramesPerPaCKeL..........oo i 54......
DECIMALIONFACIAL.ciiiiiiieiie e e e e e e e e e e e e anaeeeees 55......
LAV UL I o o =] AP TR PPPPPPPPPUPPPPPPR 55.......
ENABIEAATCMAESK.......coiiiiiiiii e 55......
AULOUPAALE. ... e aeeeeeeeeeeees 55......
THQOET ClASS ..o a e e e e e e e as 56.......

(O] 01 {0 11 (=PRSS PPTRRPPRRRR 56.......

(€T o] o I8 C=To (U =T o= al......

LI L0 o =T (@ 10 1 01U £ PURPUPRPPPPRRRTRRRP 57......
INPUENGIMES. ... e 2L.......
SIAVEDBIAYS. ..ttt ettt 57.......
(T [T = 10T = =To (1] o Tox Y PP 51......
CONNECITOGENEIALON.vviiiiiiiiiiiiiii e e e od......
T 0T £7 = - 2P 57.......
1] 0T £ 0 = T o 1 S57.......
ENabledINPUISMASK.........coooiiiiiieie e 58......
INVErEAINPUISIMASKouiiiiiiiiiieii e 58......
AULOUPTALE. ...ttt e e e e e e e s e bbb e e e e e e aeeeeaans 58.......
TrQQErOULPUL CIASS. e e e 58......
(@] 010 U (=SSR 59.......
PUISEWIALN. ... 59.......
DEIAY.... .o e e e e e e e e e e e e e e et —————— B59........
SOUMCESIMASK. ...ttt e s e e e es 50.......
CONNECITOGENEIALON. ...ttt eeeeeeeeeeeenees 59.....
ENADIE. ... 59........
1] PP 60........
AUTOUPTALE. ...ttt e e e e e e e s et b e e e e e e aeeeeaaas 60.......
DatalOgOer ClaSS......cciiiiiiiiii i e e e e e e e e e eed 61......
CONFIGUIE. ..ttt ————————- 6l.......
StartLoggINgTORLE. ... e 62......
StartLOggINgTOMEMOLY..... i i i e e e e e e e e 62.....
10T oMol o | oo TR TP PPPPP 62.......
(CT=] 1 = 0 PP PP PP PPPPPPPPTTTPPRRRR 62.......
ONSTAMLOGGING ettt e ettt e e e e e et e e e e e e e e s s ssnnnbesneeeeeeeeeees] 62......
(@151 0] o] Moo o] [T N PP PP PP TOPPPPPPPPPPRY 63......
LIMIENUMPTAMES. ... e e e e e e 63......
LIMItLOgQINGTIME. .o e e e as 63......

LML O SIZ. . oo 63

D=1 7= 0] [0 [<Y SH PR 63.......

DEVICESIMASK ...ttt 63.......
MaXLOGQEAFTAMES.ciiiiieeiiii ettt e e e e e e e 63......
MAXFIESIZE ...t a e e 63.......
oo T [T o J N2 TS0 U1 SRR 64......
10T T |1 o PP 64........
L0701 PP PPPRY 64.......
NUMLOGQEAFTAMES.ot e e e e e e e e e aeeas 64......
(oo o] a1 I 111 PP TP PPPPPPPPPPPPPPPR 64.......
FIlESIZE. .. 64........
AUTOUPTALE. ...ttt e e e e e e e e e bbb e e e e e e e aeeeeaans 64.......
AFESBLBIASSttt a e e e 65.......
(@] oo U (=SOSR 65.......
ConfiguredDeVICESMASK............cooiiiiiiiieeeeeeee 65....
ConfiguredAdCMASK ..o 65......
VCALEQUAISVCAZ.........cco i 6a......
AUTOUPTALE. ...ttt e e e e e e e e et reeeeaeeeeeaas 66.......
Vo= W Y o7 Ga.......
HPfCULOIDIVIAEA. ... 67......
LOWNOISEMOUE. ...t e e e e s eeeaees 67.......
PgaHPIDISAbIEd.........oi e 67......
LnaHPfDISabIed..........cooiiiieiiiee e 67......
PgaClampENaDIEd..........coooiiiii e 67......
FOMHZLPFENABIE...... .o 67......
TOCATENADIEA. ... 6.1.......
POWEIMOGE. ...ttt e e bbb e e e e e e e e e e 67.......
HPTCULOTTFTEQ. ... e e e 6.1.......
[0 {OAN | (011 (=0 I PP TP PRSPPI 68.......
LI e o7 AN A (=T o101 0] o PSPPI 68......
LNaGIODaIGAIN........ouiiiieiiiiee e 68.......

POAGAIN......cco e e e e e 68.......

ClasSS AFEDSB32.......co i 68.......

CONTIGUIE. ...t e e e e e e e e e e reee s 69.......
ConfiguredDEVICESIMASK.uuiiiiiiiieieii e 69....
ConfIQUrEdAdCMASK ... 69......
EnableAttenuatorHQL...........oooiiie e 69......
AttenuatorHPfCOINEL.. ... 69......
(@0 [0 | =0 [T =11 =7 o PRSPPI 69.......
AULOUPALE. ... e e e as 69.......
(@ Lo [0 IR Y=o 70.......
(o] (OAF | (011 (=10 IO T PP PPPPPPPPPTPRPPPPPPPPRPRPPTRY 4 O NUTPON
HPTCULOTTFTEQ. .. e e e e e 70.......
D10 [l C7-1] 4 OO P PP PP TTPPP 70.......
EnableLnaHpf...........ouuiiiiiiiei e d Qe
LOWPOWEIMOUTE. ...ttt e e e e e e 71......
ENableDtgCAENUALOL.uiiieie e 71....
Class AFES832LE.........uuuiiiiiiiiiieeeeeiiiiiiiiieeee e e e e e esiirneeeeeeee e e e s s s ssnsnnnsneeneseseeseses L dlninn,
(©d0] 01110 U L= PP PP T P TPPRPPP 71.......
ConfiguredDEVICESIMASK.uuiiiiiiiiei e 71....
ConfiguredAdCMASK ..ot d 2
HPTCOIMEIFTEO ...ttt e e e e e e e e 12......
[o) (AT (o] (=T o TS RSURPPPRRTY 6~ NSP
POAGAIN. ... ——————————————— 12.......
LNBIGAIN. .ot e e e e e 12.......
LOWPOWEIMOUE. ...ttt e e e e e e e e e 72......
LOWLAENCYENADLE.......coiiiiiiiie e 12......
L LT g U = (0 PRSP SRPPPPRPON 73.......
AUTOUPAALE. ...ttt e e e e e et r e e e e e e e e e e s aaneeees 73.......

(DN =N {1 (ST (0] 4 (1= ST RO TR UP RPN 73.......

Introduction
The Software Development Kit (SDK) is intended for developing appiEé&ir PhotoSound
devices in MATLAB, LabVIEW, and Visual Studio C# environments. The package cmssts of
software layers, an example of which for Legion 28B81s shown [}
(o3}

in Figure 1 The first level is the system level and it includ:
drivers that provide data exchange with devices via the syst
bus. The second level is intermediate and it consists of 32 or
bit libraries (LIB or DLL) that implement the interface f
interaction between drivers and top-level software. Componer
of the first level and, in some cases, the second level are coy
to the user's PC during the installation of drivers and are stol
separately from other SDK components in the Windows fold
The third level is functional, it is 32 or 64-bit DLLs that ensure
operation of devicest loading firmware, initializing the
hardware, implementing the protocol for transferring contrc
commands and data. The fourth level is a library one, this i
.NET assembly, which also has a DLL extension, which cor
classes for collecting and saving data, configuring devices, stc
configuration settings, saving settings in INI files and read
settings from INI files. .NET assembly of this level can alread
used in MATLAB, LabVIEW and Visual Studio C# soft cyusb3.sys =
environments The fifth level is applied, it is also represented b,
a .NET assembly with a DLL extension, which contains grag Figure 1 SDK Software Le\
controls through which the end user of the application works

with devices. These graphics can be placed on a Windows Forms Cétepptic LabVIEW front
panel through a .NET container. The sixth level is customa istandalone application with an
EXE extension, which is also a .NET assembly. With this application, tbaruset only perform
basic operations with the device, but also use it as a dialog box in a moy@ecoapplication
written in any of the above software environments.

PhotoSoundControls.dll

CyAPl.lib

The SDK has two sets of files in the sdk\x86 and sdk\x64 foldersefdiffer in the number
of machine code of dynamic libraries of the 3rd level. To build applicatoog one of the sets
is used: x86 - for 32-bit applications and x64 - for 64-lptiegtions. The components for creating
custom applications are located in the PhotoSoundSDK sub-folder. The lgsargption of files
in this subfolder is presented in the table below.

File name/folder Description

PhotoSoundClasses.dll Main .NET assembly with a class library for work
with d vices

PhotoSoundControls.dll .NET assembly with graphical controls

PhotoSoundDAQ.exe . NETbuild with app to perform basic operatior
with devices

PhotoSoundDAQ.exe.config Configuration file for PhotoSoundDAQ.exe

PhotoSoundLibs Folder with 3rd level software component

firmware and INI configuration files with settings
PhotoSoundLibs\Device\PhotoSoundDevice.dl Functional dynamic library for working with AL

devices
PhotoSoundLibs\Device\PhotoSoundDevice.in Cypress FX3 USB 3.0 Controller Firmware File
PhotoSoundLibs\Device\AFE5832.ini Configuration file with the values of the Tex

Instruments AFE5832 ADC registers loaded w
the software is started for the first time

PhotoSoundLibs\Device\AFE5818.ini Configuration file with the values of the Tex
Instruments AFE5818 ADC registers loaded w
the software is started for the first time

adc*.bin FPGA firmware file. The full file name
determined by the device type and revision of
printed circuit board.

Config Config Folder with configuration INI files

Config\Default.ini Configuration file with default device settings.
the file does not exist, then it is create
automatically when the software is started for tf

first time.
Config*.ini Alternative configuration files with device setting
Data Default folder to save data captured from ADC
Maps Folder for storing files with sensor maps. The n

is a column with sensor numbers in order from t
first channel of the first ADC to the last channel
the last ADC on the board.

Maps*.map Sensor map files. For each type of device there
file with a sensor map.

In addition to the PhotoSoundSDK software components, the SDKesclud

{ doc folder - contains this user manual and Excel files - calculators ajwation INI files for
ADC: AFE5832.xIsm and AFE5818.xIsm;

{ examples folder - contains code examples for MATLAB, LabVIEW and Visual Studio C
software environments.

Working with the PhotoSoundClassesClassLibrary.dll
Getting started in MATLAB

To get started with the class library, you need to load the buildgusite command
NET.addAssembly(asm_pathivhereasm_pathis the full path toPhotoSoundClasses.dlext,
you can get a list of classes in the library by callisg(asm.ClassesThe instances of these
classes can be used to control PhotoSound devices and collect data, &ubcref instances of
DeviceManagerand Settings classes is possible. Instances of other classes are created
automatically when connected to a device and accessible as properties ios@mce of the
DeviceManageiclass, then just a device manager. So we create a device manager by command
dev = PhotoSoundClasses.DeviceManagand start connecting to the device by command
dev.ConneciSince it takes some time to connect to the device, especially when connecting for
the first time after turning on the power of the device, then you clnother tasks, and then go
to the cycle of waiting for the connection to complete. You sheudd for a connection until one
of the Connectedor ConnectFailurgproperties in the device manager equals 1.

In the process of writing program code, you often need to know theofisnethods and
properties of a particular class, as well as the events that it can genétar this, MATLAB has
methods events properties commands. So, if we executesthods(dev) we get

>> methods (dev)

Methods for class PhotoScoundClasses.DeviceManager:

Connect Disconnect GetPlotData
CreatelLogger Equals GetType
DeviceManager GetHashCode ToString

Equals,GetType, GetHashCodeand ToStringmethods are standard for all NET clasées.
description of the rest of the methods, properties and events can be foutiteitables at the
end of the section. In addition, if you type . and press the Tab Kest,ad methods and properties
will appear from which you can select the desired one.

During the process of connecting to the device and when working tyitarious errors may
occur, for example, if the device's power is not turned on or the cable isomtected. The
OnErrorevent is provided to notify the user of errors in Device Manager. By subscribihig to
event using theaddlistener(dev,’OnError’,@onerror)command, you can display an error
message if it occurs. Thenerror handler function here takes two arguments: the first is the
source of the event (always the device manager), and the second is a referencms$taaice of
the MessageEventArgelass. ThélessageEventArgelass has Rlessageproperty that contains
a description of the error, and @ourceproperty v a reference to an instance of the class that is
the source of the error. An example of such a function code is presemietb

function onerror(~,event)
disp([char (event . Source . ToString) ' error: ' char (event . Message)));
end

The next step after successfully connecting the ADC to the device, &s & tol display the
ADC data on a graph. To do this, the Device Manager GasrotDatamethod. The command
num_samples= dev.GetPlotData(buffer buffer_length, device id, adc_num, chan_num)will
copy thechan_num channel data samples for tlzelc num ADC andevice id device to the data
buffer in the buffer memory. Arguments to this method are numbered from zehe. method
returns the number of samplesim_samplescopied to the buffer. It can be less than the number
of samples requested or the length bfiffer length if data collection is performed for fewer
samples. To allocate memory for the data buffer in the Matlab environmbetet is the
NET.createArrajcommand. The size of the buffer can be selected based on the maximum
number of data samples that can be obtained from one ADC chann&hdlout this number,
just read the value of theMaxSamplesToCaptureproperty of the Device Manager. If
num_samplesis 0, then there is no data yet. TheetPlotDatamethod is intended only for data
visualization in order to control data collection. To process ADC nlaéai time or to write this
data to a file, theDatalLoggerclass is intended.

When you finish working with the device, you should disconnect fimerdevice. To do this,
run the dev.Disconnectcommand. When connected to a device, the device settings are
automatically loaded from the configuration INI file and configuredd Aauinen disabled, the
settings are automatically saved in the configuration file.

The table below shows thsimple.m script code fromexamples\matlab\folder, which
consists of the above commands.

Table 1: Sample MATLAB script for connecting to the device, iogljextd visualizing data on
the graph

Filename = mfilename('fullpath’);
app_path = fileparts(filename);
asm_path = fullfile(app_path, .. \.. \ PhotoSoundSDK \ PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);
disp(asm.Classes);
dev = PhotoSoundClasses.DeviceManager;

methods(dev);

properties(dev);

events(dev);

disp('Connecting...');

addlistener(dev, '‘OnError' ,@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);

end

if dev.Connected

disp('Successfully connected to device');

data = NET.createArray('System.Int16' ,dev.MaxSamplesToCapture);
adc = 0;

chan = 0;

fig = figure(‘Name' , 'Plot data example');

while isvalid(fig)
samples = dev.GetPlotData(data,data.Length,0,adc,chan);
if samples>0
tmp = intl6(data);
plot(tmp(1:samples));
end
pause(0.1);
end
else
disp('Failed to connect to device');
end

dev.Disconnect;
disp('Disconnected');

Getting Started with LabVIEW

You can start working with a clas
library in LabVIEW right away b
creating an instance of the
DeviceManagerlass, then just a device
manager. To do this, right-click (RMI
on the diagram, select
Connectivity\.NET\Constructor Nodin
the Functions window. Next, left-clic
on the diagram and in the dialog bo
that appears, make an overview usin
the BrowseY button and find
PhotoSoundClasses.dll. After that, a |
of Objects classes andConstructors
appears in the window from which we

select DeviceManager and

Assembly
PhotoSoundClasses(1.1.0.0) =

Objects

Browse.

* Dbg

* Device

* DeviceManageritem
EmptyEventArgs
ltem
ltemsCollection
MessageEventArgs
Settinas

.« & &+ &+

Constructors

| DeviceManager()

DeviceManager(String appPath)

DeviceManager(String appPath, Settings settings)

~

Help

DeviceManager(String appPatlifrigure
1). Many other classes can be seen

the list of Objectsclasses. The user ca..

Figure 1 Creating a Device Manager

in LabVIEW

use instances of these classes to control PhotoSound devices and collect ddie,dan only
create instances of thBeviceManageand Settingsclasses. Instances of the rest of the classes
are created automatically when connected to a device and are availaljeogerties of the
device manager. After placing the device manager constructor on the diagram, we ldwench t
connection to the device. To do this, addnnectivity\.NET\Invoke Nod€NET o the diagram
using the RMB, connect the link input to the constructor and seleet Gbhnnect(Boolean
autoApdate)method through theViethod menu(Figure 2)

Create Constant
Create Control
Create Indicator

appPath

Visible Items »
Help

Examples

Description and Tip...
Breakpoint »

Select Constructor...

NET Palette

Create

Constant
Control

Replace
Indicator

v v E3w

Name Format

Remove and Rewire
Channel Writer...

Properties
i All Controls and Indicators
All Constants

Property for PhotoSoundClasses.DeviceManager Class

Method for PhotoSoundClasses.DeviceManager Class b |

Connect({Bootean autoUpdate)
Createl.ogger(String LoggerName, Int32 LossyQueueSize)
Disconnect()

Equals(Object obj)

GetHashCode()

GetPlotData(Int16[] PlotBuffer, Int32 PlotSamples, Int32 Deviceld, Int32 AdcNum, Int32 ChannelNum)

GetType()
StopOperation()
ToString()
UpdateStatus()

Figure 2 Calling Connect Method in LabVIEW

Since it takes some time to connect to the device, especially when connectittgeféirst
time after turning on the power of the device, then you can do otheks$a and then go to the
cycle of waiting for the connection to complete. You should waiafoonnection until the value
of one of theConnectedor ConnectFailurgroperties of the device manager becomes True. To
read the properties of the device manager, addnnectivity\.NET\Property Nodé.NET)to the
diagram using the right mouse button, connect the link inputite tonstructor and through the
Property menu select a specific property, for examplennected(Figure 3

|,! & DeviceManager _P! g = DeviceManager g
Property Browse... ‘

AFE5818Instance
AFE5832Instance
Capturelnstance 1
Comeaed |
ConnectFailure ‘
Devicelnstances
DevicesCount
ForceFpgaReload
Masterld
MaxAdcPerDevice
MaxChannelsToCapture
MaxSamplesToCapture
SensorsMapFilesList
SensorsMapFolder
Settingsinstance
Triggerinstance
UltrasoundSyncinstance

Figure 3: Reading Device Manager Property in LabVIEW

During the process of connecting to the device and when working tyitarious errors may
occur, for example, if the device's power is not turned on or the cable isorotected. The
OnErrorevent is provided to notify the user of errors in Device Manager. If ygigtex a handler
for this event, you can display an error message if it occurs. To do this,thedd
Connectivity\.NET\Register Event Callbatd the diagram using the RMB, connect theent
input to the device manager constructor and selé€otError from the Event menu (Figure %
Now, through RMB at th&'| Refinput, selectCreate Callback/l. LabVIEW will create a new Vi
with the desired interface, on the diagram of which you can add the outpatdialog box with
an error message (Figurd. A he handler diagram has &vent Datainput - a cluster with two
fields:sender t an event source (always a device managet)a reference to an instance of the
MessageEventArgelass. ThélessageEventArgelass has &lessageproperty that contains a
description of the error, and &ourceproperty is a reference to the instance of the class that is
the source of the error.

» 08 DeviceManager Et'z,ﬂ 3 Reg Event Callback }

» Event T
» VI Ref \
» User Parameter

OnConnect(Object sender, EventArgs €)
OnConnecting(Object sender, EventArgs €)

\ OnError(Object sender, MessageEventArgs €)

‘ OnPropertyChanged(Object sender, EventArgs e)

Figure 4: Create an OnError event handler in LabVIEW

S« Object §
Event Data % =% MessageEventArgs ToString »

Control Ref Source » =
1 Message »
User Parameter LT e =
Event Common Data -:

Figure 50nError Event Handler chart

After successfully connecting the ADC to the device, the next stapually to display the
ADC data on a graph. To do this, the Device Manager GasFdotDatamethod that copies the
data samples of thehannelNum channel for the AD&dcNum and theDeviceld) device to the
data buffer in thePlotBuffer memory. Arguments to this method are numbered from zero. The
buffer size can be selected based on the maximum number of data samplesuthia¢ ©btained
from one ADC channel. To find out this number, just read the valtledfiaxSamplesToCapture
property of the Device Manager. At the output@ttPlotDatg the method returns the number
of samples copied to the buffer. It can be less than the number of smpluested or the
length of thePlotSamplesbuffer if data collection is done for fewer samples. If the output o
GetPlotDatais 0, then there is no data yet. TheetPlotDatamethod is intended only for data
visualization in order to control data collection. Thetal oggerclass is intended to process ADC
data in real time or to write this data to a file in a user-fottad format.

n = DeviceManager | » "+ DeviceManager 5|
MaxSamplesToCapture#

GetPlotData "M

PlotBuffer ¥ :_:J waveform Graph
PlotSamples ot

* Deviceld

AdcNum

ChannelNum

stop

Figure 6: Displaying ADC data on a graph

When you finish working with the device, you should disconnect from #ncd. The
Disconnectmethod is intended for this. When connected to a device, the device gsttine

automatically loaded from the configuration INI file and configuredd amen disabled, the
settings are automatically saved in the configuration file.

The examples\labview\ folder contains a simple.vi example that implemeantahbve steps.

Getting Started in Visual Studio C#

To get started with the class library, you need to add a reference te th
PhotoSoundClasses.dll library in your Visual Studio project. Next, deddetrget build platform
for the project t x64 or x86 and copy the files from the x64\PhotoSoundSDK\ or x86\
PhotoSoundSDK\ folder to the project's output folder. The class libartams many classes,
instances of which the user can use to control PhotoSound devices aedtatdita, but he
himself can only create instances of theviceManageandSettingsclasses. Instances of other
classes are created automatically when connected to a device and are availpbipesies of
an instance of theDeviceManagerclass, then just a device manager. So, we create a device
manager and start the connection to the device:

DeviceManager deviceManager = newDeviceManager () ;
deviceManager.Connect();

Immediately after calling theConnect method, the device manager will contain empty
references to instances of other classes, and properties with informationtadevices will be
incorrect, since it takes some time to connect to the device, especially when cimméor the
first time after the device is powered on. To notify the user abbetend of the connection, the
OnConnectevent is provided in the device manager. In the handler for this event,caou
perform actions that require information about devices or access instaotether classes in
the library. An example of such a handler that starts a timer to upda¢ graph and allocates
memory for the data buffer is below:

deviceManager.OnConnect += OnConnectEventHandler;
private void OnConnectEventHandler(object sender, EventArgs €)

PlotBuffer = new short [deviceManager.MaxSamplesToCapture];
timer 1. Start();

}

During the process of connecting to the device and when working tyitarious errors may
occur, for example, if the device's power is not turned on or the cable isomtected. The
OnErrorevent is provided to notify the user of errors in Device Manager. By subscribthip t
event, you can display an error message if it occurs. The handler function hawsttwo
arguments: the first is a reference to the device manager, and the secandeference to an
instance of theMessageEventArgelass. ThélessageEventArgelass has &lessageproperty
that contains a description of the error, ancsaurceproperty t a reference to an instance of the
class that is the source:

deviceManager.OnError += OnErrorEventHandler;
private void OnErrorEventHandler(object sender, MessageEventArgs €)

{

MessageBox.Show($"{e.Source.ToString()} error: {e.Message} ");

}

After successfully connecting the ADC to the device, the next stapually to display the
ADC data on a graph. To do this, there is a method in the device manager

public int GetPlotData(ref short [] PlotBuffer , int PlotSamples ,
int Deviceld, int AdcNum, int ChannelNum);

The method returns the number of data samples copied to EietBuffer buffer. The
requested number ofPlotSamplesmust be less than or equal to the size of thmiBuffer.
Deviceld AdcNum and ChannelNum t device identifier on the bus, ADC number and ADC
channel number, respectively. These arguments are numbered from zero. The kzdfeasibe
selected based on the maximum number of data samples that can be obthoradone ADC
channel. To find out this number, just read the value of thexSamplesToCapturproperty of
the Device Manager. If the return value GktPlotDatais 0O, then there is no data yet. The
GetPlotDatamethod is intended only for data visualization in order to cohttata collection.
TheDataloggerlass is intended to process ADC data in real time or to wrigedtta to a file.

When you finish working with the device, you should disconnect from #ndcd. The
Disconnectmethod of the Device Manager is intended for this. When conneiteddevice, the
device settings are automatically loaded from the configuration INI file anfigured. And when
disabled, the settings are automatically saved in the configuration file.

The table below shows the code from the sample Simple project fria
examples\visual\SdkExamples\ folder that implements the above actions.

Table 2: An example Visual C# program for connecting to a devieetingland visualizing
data on a graph

using PhotoSoundClasses;
using System;
using System.Windows.Forms;

namespace Simple

{
public partial class Simple : Form

{
{

InitializeComponent();
chartl.Series.Clear();

public Simple ()

var series = chartl.Series.Add("ADC1/CH1Y;
series.ChartType =
System.Windows.Forms.DataVisualization.Charting.Ser iesChartType.FastLine;
}
private DeviceManager deviceManager = null ;
private short [] PlotBuffer = null ;

private void Forml_Load(object sender, EventArgs e)

deviceManager = new DeviceManager();
deviceManager.OnConnect += OnConnectEve ntHandler;
deviceManager.OnError += OnErrorEventHa ndler;
deviceManager.Connect();
}
private void timerl_Tick(object sender, EventArgs e)
{
int samples = deviceManager.GetPlotData(PlotBuffer, PI otBuffer.Length, O,
0, 0);
if (samples > 0)
{
chartl.Series[0].Points.Clear();
chartl.Series[0].Points.DataBindY (newArraySegment< short >(PlotBuffer,
0, samples));
}
}
private void OnConnectEventHandler(object sender, EventArgs e)
PlotBuffer = new short [deviceManager.MaxSamplesToCapture];
timerl.Start();
}
private void OnErrorEventHandler(object sender, MessageEventArgs e)
{
MessageBox.Show($"{e.Source.ToString()} error: {e.Message} ");
}
private void Forml_FormClosed(object sender, FormClosedEventArgs e)
{
deviceManager?.Disconnect();
}

Controlling Data Acquisition in MATLAB

ADC data acquisition is controlled by thapture Trigger and TriggerOutput classes.
Instances of these classes are not created by the user, but by the device manager aft
successfully connecting to devices. Links to created instances of classes are rsttned i
properties of the same nam€&aptureg Triggerand TriggerOutputof the device manager (the
DeviceManageiclass). Before connecting devices, these properties contain empty links (null).

TheCaptureclass allows you to change data acquisition settings, such as the numizsa of d
samples per ADC channel or the flag to wait for a trigger event beforengtatata collection.
Settings from the properties of theCapture class are passed to all connected devices
simultaneously. Thé&Trigger class defines the condition by which data collection begins, for
example, whether triggering from an internal generator is allowed or the nuraban input that
receives an external trigger signal. Settings from the properties of Ttheger class are
transferred to only one device, which is the master. If several mastersoameected to the PC,
the settings are only transferred to the first device on the system bus.TTlygerOutputclass
defines the parameters for the trigger output, such as pulse width delay. The settings from
the properties of thelriggerOutputclass are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the correspprapedgy
of the class instance, for exampleev.Capture.WaitTrigger= true. This value will be
automatically transferred to the device via the system bus, for example USBJsmdaved in
memory for later writing the settings to the configuration file. Thehavior is well suited for
management through a graphical user interface - the user clicks a battdhe settings change
immediately. There is another method that is suitable for programmayicadntrolling data
collection when many parameters are changed at the same time. In orderdioibit the
automatic transfer of settings to the device, you need to assign the valseto the AutoUpdate
property of the corresponding class. Next, you can assign new valueg fardperties of the
class and call th€onfiguremethod of that class. Theonfiguremethod passes the settings to
the device and sets theutoUpdate property back tdrue.

An example of changing the properties of theptureclass:

dev. Capture . AutoUpdate = false

dev. Capture . DecimationFactor =1;
dev.Capture.EnabledAdcMask = 2"dev.MaxAdcPerDevice -1;
dev.Capture.FramesPerPacket = 1;

dev.Capture.SamplesToCapture = 1000;

dev.Capture.WaitTrigger = 1;

dev.Capture.Configure;

An example of changing the properties of theggerclass:

dev.Trigger.AutoUpdate = false;
dev.Trigger.ConnectToGenerator = true;
dev.Trigger.InvertedinputsMask = 0;
dev.Trigger.EnabledinputsMask = 1;
dev.Trigger.GeneratorFrequency = 15;

dev.Trigger.InputNames(1) = 'OPT' ;
dev.Trigger.SlaveDelays(1) = 0;
dev.Trigger.InputsDelay = 3;
dev.Trigger.InputsGuard = 10;
dev.Trigger.Configure;

An example of changing the properties of theggerOutputclass:

dev.Trigger.TriggerOutputs(1).AutoUpdate = false;
dev.Trigger.TriggerOutputs(1).ConnectToGenerator = true;
dev.Trigger.TriggerOutputs(1).PulseWidth = 10;
dev.Trigger.TriggerOutputs(1).SourcesMask = 0;
dev.Trigger.TriggerOutputs(1).Invert = false;
dev.Trigger.TriggerOutputs(1).Enable = true;
dev.Trigger.TriggerOutputs(1).Delay = 1;
dev.Trigger.TriggerOutputs(1).Configure;

Each class property has a certain range of valid values. When you assigmta egbroperty,
it is validated and the property is changed only if the neweaun that range. Therefore, when
creating a graphical user interface, you should read the property immedgiaftter assignment
and update the corresponding control with the read value. So, the wikbe able to see that
the value entered by him is incorrect and it was not saved and wasarwtferred to the device.

In addition to properties with settings, thériggerclass contains th&etinputFrequencies
method. This method reads the current values of the frequency meters coediéctthe trigger
inputs. After the call, you must wait for tienUpdatelnputFrequencieevent, and then you can
read the frequency values from therigger InputFrequenciesarray. The handler function has
two arguments, the first one is sent to the device manager, and the seconceimpily one. An
example of such a function:

function onupdatefreq(src,~)
for n = l:src.Trigger.InputFrequencies.Length

disp([‘Trigger input ' numa2str(n) "frequency is
numa2str(src.Trigger.InputFrequencies(n))]);
end
end

The table below shows the code of the captrig.m script from the exashpklab\ folder,
which implements the data collection control described above. iarithe reference section of
this tutorial, you can find a description of all the properties and mdghof theCapture, Trigger,
and TriggerOutputclasses.

Table 3Example of the MATLAB Script to Control Data Collection

filename = mfilename(‘fullpath’);

app_path = fileparts(filename);

asm_path = fullfile(app_path, . \.. \'x64\ PhotoSoundClasses.dlII);
asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...’);

addlistener(dev, ‘OnError' ,@onerror);
addlistener(dev, '‘OnUpdatelnputFrequencies' ,@onupdatefreq);
dev.Connect;
while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);
end

if dev.Connected
disp('‘Successfully connected to device');

dev.Capture.AutoUpdate = false;

dev.Capture.DecimationFactor = 1;

dev.Capture.EnabledAdcMask = 2*dev.MaxAdcPerDevice -1;
dev.Capture.FramesPerPacket = 1;

dev.Capture.SamplesToCapture = 1000;

dev.Capture.WaitTrigger = 1;

dev.Capture.Configure;

dev.Trigger.AutoUpdate = false;
dev.Trigger.ConnectToGenerator = true;
dev.Trigger.InvertedinputsMask = 0;
dev.Trigger.EnabledinputsMask = 1;
dev.Trigger.GeneratorFrequency = 15;
dev.Trigger.InputNames(1) = 'OPT' ;
dev.Trigger.SlaveDelays(1) = 0;
dev.Trigger.InputsDelay = 0;
dev.Trigger.InputsGuard = 10;
dev.Trigger.Configure;

dev.Trigger.TriggerOutputs(1).AutoUpdate = false;
dev.Trigger.TriggerOutputs(1).ConnectToGenerator = true;
dev.Trigger.TriggerOutputs(1).PulseWidth = 10;
dev.Trigger.TriggerOutputs(1).SourcesMask = 0;
dev.Trigger.TriggerOutputs(1).Invert = false;
dev.Trigger.TriggerOutputs(1).Enable = true;
dev.Trigger.TriggerOutputs(1).Delay = 1;
dev.Trigger.TriggerOutputs(1).Configure;

dev.Trigger.UpdatelnputFrequencies;

data = NET.createArray('System.Int16' ,dev.MaxSamplesToCapture);
adc = 0;

chan = 0;

fig = figure(‘Name' , 'Plot data example’);

while isvalid(fig)
samples = dev.GetPlotData(data,data.Length,0,adc,chan);
if samples>0
tmp = intl6(data);
plot(tmp(1:samples));
end
pause(0.1);
end
else
disp('Failed to connect to device');
end

dev.Disconnect;

disp('Disconnected');

Controlling Data Acquisition LabVIEW
ADC data acquisition is controlled by thepture Trigge; and TriggerOutput classes.
Instances of these classes are not created by the user, but by the device manager aft
successfully connecting to devices. Links to created instances of classes are rsttned i
properties of the same nam€&apturg Triggerand TriggerOutputof the device manager (the
DeviceManageiclass). Before connecting devices, these properties contain empty links (null).

TheCaptureclass allows you to change data acquisition settings, such as the nufidz¢ao
samples per ADC channel or the flag to wait for a trigger event beforengtatata collection.
Settings from the properties of theCapture class are passed to all connected devices
simultaneously. ThéTrigger class defines the condition by which data collection begins, for
example, whether triggering from an internal generator is allowed or the nuraban input that
receives an external trigger signal. Settings from the properties of Ttheger class are
transferred to only one device, which is the master. If several masterscaected to the PC,
the settings are only transferred to the first device on the system bus.TTlygerOutputclass
defines the parameters for the trigger output, such as pulse width delay. The settings from
the properties of thelriggerOutputclass are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the correspprapedgy
of the class instance, as shown in the figures below. This valusevalitomatically transferred
to the device via the system bus, for example USB, and also saved in memory foritatgrtiae
settings to the configuration file. In LabVIEW, instead of making your own \zdnge handler
for each control, you can update multiple properties in a comrhandler. Since the user can
change the value of only one control at a time, there will be only one vedue in the handler.
An internal check in the class will reveal this new value and thaengsttill be transferred to the
device via the system bus once.

= =% DeviceManager »

Trigger y n= Trigger 5
»

InputsDelay » InputsDelay

InputsGuard » InputsGuard
, = Inverted Inputs [TE-¥8}—b |nvertedinputsMask
Trigger [E¥— Enabled Inputs |-JE-T8}—p EnabledIinputsMask
ConnectToGenerator [PConnectToGenerator

InputNames b InputNames

SlaveDelays b SlaveDelays

Figure 2: Changing properties of the Trigger class in LabVIEW

B == DeviceManager 3

Capture ’ 5= Capture »
DecimationFactor » DecimationFactor
Enabled ADC je-Ts—r EnabledAdcMask
Capture@n-’ FramesPerPacket » FramesPerPacket
SamplesToCapture PSamplesToCapture

]Lﬂllla ';Tl’i g ger » |‘||.|'a itTrI g g er

Figure 3 Changing Properties of the Capture Class in LabVIEW

% = DeviceManager
Trigger N == Trigger »

TriggerQOutputs? @
E_"' = % =¢ TriggerOutput §
ConnectToGenerator |- *ConnectToGenerator
Trigger Output 1Tt [— 00 [et
PulseWidth 0 PulseWidth
Sources ~JET#—r SourcesMask

Figure 4 Changing Properties of the TriggerOutput Class in LabVIEW

Each class property has a certain range of valid values. When you assigmta egbroperty,
it is validated and the property is changed only if the newe&un that range. Therefore, when
creating a graphical user interface, you should read the property immedgliatter assignment
and update the corresponding control with the read value. So, the wiebe able to see that
the value entered by him is incorrect and it was not saved and wasarferred to the device.
The figures below show how you can read new property values for all trasged.

g =2 DeviceManager g

Capture ng == Capture n
DecimationFactor ¥ DecimationFactor
EnabledAdcMask M=t Enabled ADC
FramesPerPacket » FramesPerPacket n»n{ » A Capture
SamplesToCapture® SamplesToCapture
WaitTrigger M WaitTrigger

Figure 5: Reading Properties of the Capture Class in LabVIEW

7|3 = DeviceManager ﬂ_
= - s MTric gerk
Trigger ! 54 Trigger E :

ConnectToGeneratort ‘| ConnectToGenerator

EnabledinputsMask EEI Enabled Inputs
InputNames ’ InputNames
nputName nputName Ll > A Trigger
InputsDelay » InputsDelay
InputsGuard » InputsGuard

InvertedinputsMask » Inverted Inputs
SlaveDelays YIEET) SlaveDelays

Figure 6: Reading Properties of the Trigger Class in LabVIEW

5 =0 DeviceManager §

a = Trigger n

Trigger " [TriggerOutputsy :
5 =% TriggerOutput EI
ConnectToGenerator® ConnectToGenerator
Del > De
Enable b Enable
T = T *#Trigger Output 1
SourcesMask P—JeE-3 Sources

Figure 7: Reading the Properties of the TriggerOutput Class in LabVIEW

In addition to properties with settings, the Trigger class contains the
UpdatelnputFrequenciesmethod. This method reads the current values of the counters
connected to the trigger inputs. After calling the method, you musait for the
OnUpdatelnputFrequenciesevent, and then you can read the frequency values from the
Trigger InputFrequenciearray. The handler function has two arguments, the first is a reference

to the device manager and the second is a null reference. An exampleho& $unction

E..Lg %2 Reg Event Callback ?!
@ Iy i—'OnU;: datelnputFrequencies ¥

@;’_ 3 VI Ref

2
IanrtFrequencieslf' ra User Parameter
L 5 =2 DeviceManager f;
Trigger ’ |LE,' i Trigger "
UpdatelnputFrequencies

Figure 8: Measuring Trigger Input Frequencies in LabVIEW

The examples\labview\ folder contains an example captrig.vi that implemtnetsdata
collection control described above. And in the reference section of th@itlt you can find a
description of all the properties and methods of thepturg Trigger andTriggerOutputclasses.

Controlling Data Acquisition Visual Studio C#

ADC data acquisition is controlled by thapture Trigger and TriggerOutput classes.
Instances of these classes are not created by the user, but by the device manager aft
successfully connecting to devices. Links to created instances of classes are rsttned i
properties of the same nam€&aptureg Triggerand TriggerOutputof the device manager (the
DeviceManageiclass). Before connecting devices, these properties contain empty links (null).

TheCaptureclass allows you to change data acquisition settings, such as the nufda¢ao
samples per ADC channel or the flag to wait for a trigger event beforengfatata collection.
Settings from the properties of theCapture class are passed to all connected devices
simultaneously. Thé&Trigger class defines the condition by which data collection begins, for
example, whether triggering from an internal generator is allowed or the nuraban input that
receives an external trigger signal. Settings from the properties of Ttheger class are
transferred to only one device, which is the master. If several mastersoameected to the PC,
the settings are only transferred to the first device on the system bus.TTlygerOutputclass
defines the parameters for the trigger output, such as pulse width delay. The settings from
the properties of thelriggerOutputclass are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the correspprapedgy
of the class instance, for examptieviceManager.Capture.WaitTriggertrue. This value will be
automatically transferred to the device via the system bus, for example USElsmdaved in
memory for later writing the settings to the configuration file. Thehavior is well suited for
management through a graphical user interface - the user clicks a battdhe settings change
immediately. There is another method that is suitable for programmadgicadntrolling data
collection when many parameters are changed at the same time. In orderdioibit the
automatic transfer of settings to the device, you need to assign the valseto the AutoUpdate
property of the corresponding class. Next, you can assign new valueg fardperties of the
class and call th€onfiguremethod of that class. Theonfiguremethod passes the settings to
the device and sets theutoUpdate property back tdrue.

An example of changing the properties of theptureclass:

deviceManager.Capture.AutoUpdate = false ;

deviceManager.Capture.DecimationFactor = 1;

deviceManager.Capture.EnabledAdcMask = (1u << devic eManager.MaxAdcPerDevice) - 1,
deviceManager.Capture.FramesPerPacket = 1;

deviceManager.Capture.SamplesToCapture = 1000;

deviceManager.Capture.WaitTrigger = true ;

deviceManager.Capture.Configure();

An example of changing the properties of theggerclass:

deviceManager.Trigger.AutoUpdate = false ;
deviceManager.Trigger.ConnectToGenerator = true ;
deviceManager.Trigger.InvertedinputsMask = 0;
deviceManager.Trigger.EnabledinputsMask = 0;
deviceManager.Trigger.GeneratorFrequency = 10.0;

deviceManager.Trigger.InputNames|[0] = "OPT";
deviceManager.Trigger.SlaveDelays[0] = O;
deviceManager.Trigger.InputsDelay = 0;
deviceManager.Trigger.InputsGuard = 10;
deviceManager.Trigger.Configure();

An example of changing the properties of theggerOutputclass:

deviceManager.Trigger.TriggerOutputs[0].AutoUpdate = false ;
deviceManager.Trigger.TriggerOutputs[0].ConnectToGe nerator = true ;
deviceManager.Trigger.TriggerOutputs[0].PulseWidth =10.0;
deviceManager.Trigger.TriggerOutputs[0].SourcesMask =0;
deviceManager.Trigger.TriggerOutputs[O].Invert = false ;
deviceManager.Trigger.TriggerOutputs[0].Enable = true ;

deviceManager.Trigger.TriggerOutputs[0].Delay = 0;
deviceManager.Trigger.TriggerOutputs[0].Configure()

Each class property has a certain range of valid values. When you agalga & a property,
it is validated and the property is changed only if the newe&un that range. Therefore, when
creating a graphical user interface, you should read the property imnalgiafter assignment
and update the corresponding control with the read value. So, the wdebe able to see that
the value entered by him is incorrect and it was not saved and wasarwtferred to the device.

In addition to properties with settings, the Trigger class contains the
UpdatelnputFrequenciesmethod. This method reads the current values of the counters
connected to the trigger inputs. After calling the method, you mushit for the
OnUpdatelnputFrequenciesevent, and then you can read the frequency values from the
Trigger InputFrequenciearray. The handler function has two arguments, the first is a reference

to the device manager and the second is a null reference. An examplehohgunction:

private void OnUpdatelnputFrequencies(object sender, EventArgs e)

if (labels == null)
labels = newLabel[4] { labelFreql, labelFreq2, labelFreq3, lab elFreg4 };
for (int i=0;i<deviceManager.Trigger.InputFrequencies. Length; i++)
labels[i]. Text = $"Input {i} frequency:
{deviceManager.Trigger.InputFrequenciesi: F1} Hz";

}

The table below shows the code from the CapTrig example projemin fthe
examples\visual\SdkExamples\ folder that implements the data collection cbad&scribed
above. And in the reference section of this tutorial, you can find a gegoriof all the properties
and methods of theCapturg Trigger andTriggerOutputclasses.

Table 4. Sample Visual C# Program for Managing Data Collection

using PhotoSoundClasses;
using System;
using System.Windows.Forms;

namespace CapTrig

public partial class CapTrig : Form

{
public CapTrig ()

{
InitializeComponent();
chartl.Series.Clear();
var series = chartl.Series.Add("ADC1/CH1";
series.ChartType =
System.Windows.Forms.DataVisualization.Charting.Ser iesChartType.FastLine;
this .Enabled = false ;

}

private DeviceManager deviceManager = null ;
private short [] PlotBuffer = null ;

private void Forml_Load(object sender, EventArgs €e)

deviceManager = new DeviceManager();
deviceManager.OnUpdatelnputFrequencies += OnUpdatelnputFrequencies;
deviceManager.OnConnect += OnConnectEve ntHandler;
deviceManager.OnError += OnErrorEventHa ndler;
deviceManager.Connect();

private void OnUpdatelnputFrequencies(object sender, EventArgs e)

if (labels == null)
labels = newLabel[4] { labelFreql, labelFreq2, labelFreq3,
labelFreqg4 };

for (int i=0;i<deviceManager.Trigger.InputFrequencies. Length;
i++)
labels[i]. Text = $'Input {i} frequency:
{deviceManager.Trigger.InputFrequenciesi]: F1} Hz";

private void timerl_Tick(object sender, EventArgs e)

in t samples = deviceManager.GetPlotData(PlotBuffer, PI otBuffer.Length,
0, 0, 0);
if (samples > 0)
{
chartl.Series[0].Points.Clear();
chartl.Series[0].Points.DataBindY/(new
ArraySegment<short >(PlotBuffer, 0, samples));

}

private void OnConnectEventHandler(object sender, EventArgs e)

PlotBuffer = new short [deviceManager.MaxSamplesToCapture];
timerl.Start();
this .Enabled = true ;

deviceManager.Capture.AutoUpdate = false ;
deviceManager.Capture.DecimationFactor =1;
deviceManager.Capture.EnabledAdcMask = (Lu <<
deviceManager.MaxAdcPerDevice) - 1;
deviceManager.Capture.FramesPerPacket = 1;
deviceManager.Capture.SamplesToCapture =1000;
deviceManager.Capture.WaitTrigger = true ;
deviceManager.Capture.Configure();

deviceManager.Trigger.AutoUpdate = false ;

deviceManager.Trigger.ConnectToGenerato r= true ;
deviceManager.Trigger.InvertedinputsMas k=0;
deviceManager.Trigger.EnabledinputsMask =0;
deviceManager.Trigger.GeneratorFrequenc y =10.0;
deviceManager.Trigger.InputNames|[0] = "OPT",
deviceManager.Trigger.SlaveDelays[0] = 0;

deviceManager.Trigger.InputsDelay = 0;
deviceManager.Trigger.InputsGuard = 10;
deviceManager.Trigger.Configure();

deviceManager.Trigger.TriggerOutputs[0] AutoUpdate = false ;
deviceManager.Trigger.TriggerOutputs[0] .ConnectToGenerator = true ;
deviceManager.Trigger.TriggerOutputs[0] .PulseWidth = 10.0;
deviceManager.Trigger.TriggerOutputs[0] .SourcesMask = 0;
deviceManager.Trigger.TriggerOutputs[0] Invert = false ;
deviceManager.Trigger.TriggerOutputs[0] .Enable = true ;
deviceManager.Trigger.TriggerOutputs[0] .Delay = 0;
deviceManager.Trigger.TriggerOutputs[0] .Configure();

udGeneratorFrequency.Value =
(decimal)deviceManager.Trigger.GeneratorFrequency;

udSamplesToCapture.Value = deviceManage r.Capture.SamplesToCapture;
cbWaitForTrigger.Checked = true ;
}
private void OnErrorEventHandler(object sender, MessageEventArgs e)
{
MessageBox.Show($"{e.Source.ToString()} error: {e.Message} ");
}
private void Forml_FormClosed(object sender, FormClosedEventArgs e)
{
deviceManager.Disconnect();
}
private void udSamplesToCapture_ValueChanged(object sender, EventArgs e)
{

deviceManager.Capture.SamplesToCapture =
(i nt)JudSamplesToCapture.Value;

udSamplesToCapture.Value = deviceManage r.Capture.SamplesToCapture;
}
private void udGeneratorFrequency_ValueChanged(object sender, EventArgs e)
{
deviceManager.Trigger.GeneratorFrequenc y=

(double)udGeneratorFrequency.Value;
udGeneratorFrequency.Value =
(decimal)deviceManager.Trigger.GeneratorFrequency;

}

private void cbWaitForTrigger_CheckedChanged(object sender, EventArgs e)

{
deviceManager.Capture.WaitTrigger = cbW aitForTrigger.Checked,;

}

private Label[] labels = null ;

private void buttonUpdate_Click(object sender, EventArgs €)
{

deviceManager.Trigger.UpdatelnputFreque ncies();

}

Recording datéo a Filen MATLAB

Data is written to a file using theatalL.oggeiclass. Instances of this class (data loggers) are
created by the user using thereateLoggemethod of the device manager (thesviceManager
class):

logger =dev . CreateLogger (' Matlab ");

Call theCreateLoggemethod only after connecting to devices, otherwise the method
returns an empty reference. The method returns a reference to the createa Idgger, and its
arguments are the name of the created data logger and the length of the qubaga writing to
memory, which is discussed in the section. The name is used to sasettings of the logger in
the configuration file. The user can create an arbitrary number of data loggers.Idtasr can
write data from one or several devices to binary files with the raw extensionseweral logger
can receive data from the same device.

The logger starts writing ADC data to a file after callingtitstLoggingToFilemethod with a
file name without an extension as an argument. The path to the file beintewig determined
by the DataFolderproperty of the logger:

logger . DataFolder =app _path ;
logger . StartLoggingToFile (' TestData ');

Immediately after the successful start of the recording, the logger sets the \ailihe
Loggingproperty totrue, and after the end of the recordingto false. The end of writing to the
file occurs when thé&toplLogginanethod of the logger is called:

logger . StoplLogging

The logger can automatically end recording to the file if one of theiotise conditions set
before the start of recording is met. These conditions include exogethe file size in
megabytes, exceeding the file recording time, and exceeding the numibecarfded frames. An
example of setting these conditions through the properties of the loggearesemted below:

logger . MaxFileSize = 100;
logger . MaxLoggedFrames = 100;
logger . LoggingTimeout = 60;
logger.LimitLoggingTime = true;
logger.LimitNumFrames = true;
logger . LimitFileSize = true

Data recording to a file can be controlled using the propersiges of the loggerProgress
t recording progress in percenEileSizet the current size of the data file in megabytes,

NumLoggedFramed the current number of recorded ADC data frames andgingTimet the
current time from the beginning of the file recording in seconds. The Progrepgeny shows
the actual progress of the recording only if one of the restrictive conditidaxFileSizeor
MaxLoggedFramess specified, and the progress refers to the one closest to thidlrhént of
the condition. The logging timeoggingTimds not used to calculate the logging progress, since
the time control is intended only for an emergency stop of logging ttea$ a result of some
unforeseen situation, for example, due to non-receipt of data whea dptical trigger signal is
turned off. Below is an example of displaying the current state of theelogg

k = fprintf (' Logging: % d%%, %6.2f MB, %d frames, %6.2 fs/

logger.Progress,logger.FileSize,logger.NumLoggedFrames,
logger . LoggingTime);

The table below shows the filesave.m script code from the examples\matédidrf which
implements the data collection control described above. Also in the
examples\matlab\RawConverter\ folder there is a Raw2Mat.m script for comgeei RAW file
to MAT format. In the reference section of this tutorial, you can find a dason of all the
properties and methods of thBatalLoggerclass, as well as a description of the data file format.

Table 5 An example MATLAB script to write ADC data to a file

filename = mfilename(fullpath’);

app_path = fileparts(filename);

asm_path = fullfile(app_path, .. \.. \ PhotoSoundSDK\ PhotoSoundClasses.dlII);
asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...’);

addlistener(dev, '‘OnError ,@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);

end

if dev.Connected

disp('Successfully connected to device');

data = NET.createArray('System.Int16' ,dev.MaxSamplesToCapture);
k=0;

adc = 0;

chan = 0;

fig = figure('‘Name' , 'Plot data example');

logger = dev.CreatelLogger(‘Matlab');

logger.DataFolder = app_path;

logger.DevicesMask = 2*dev.DevicesCount -1;

logger.MaxFileSize = 100;
logger.MaxLoggedFrames = 100;
logger.LoggingTimeout = 60;
logger.LimitLoggingTime = true;
logger.LimitNumFrames = true;
logger.LimitFileSize = true;

logger.StartLoggingToFile(‘TestData');

logging = true;

while isvalid(fig)
samples = dev.GetPlotData(data,data.Length,0,adc,chan);
if samples>0
tmp = intl6(data);
plot(tmp(1:samples));
end
for m=1k
fprintf(\ b)),
end
k=0;
if logger.Logging
k = fprintf('‘Logging: %d%%, %6.2f MB, %d frames, %6.2f '
logger.Progress,logger.FileSize,logger.NumLoggedFrames,
logger.LoggingTime);
elseif logging
logging = false;

fprintf('Logging was finished \n');
end
pause(0.1);
end
logger.StopLogging;
else
disp('Failed to connect to device');
end

dev.Disconnect;
fprintf('\ nDisconnected \n');

Recording Data to a File in LabVIEW

Data is written to a file using th®ataloggerclass. =
Instances of this class (data loggers) are created by the | Createlogger _ »
using the CreateLoggermethod of the DeviceManager [Labview] LoggerName
(Figure 9). Call theCreateLoggermethod only after e W
connecting to devices, otherwise the method returns Figure 9 Creating a Data Logg
empty reference. The method returns a reference to tl in LabVIEW
created data logger, and its arguments are the name of the created data loggehahehgth
of the queue when writing to memory, which is discusseda¢éal ogger cladselow. The name
is used to save the settings of the logger in the configuration fileu$@ecan create an arbitrary
number of data loggers. Each logger can write data from one or several devicemiy files
with the RAW extension, and several loggers can receive data from the sare.devi

"% DeviceManager

=
[3

The logger starts writing ADC data to a file after callin§titgstLoggingToFilemethod with a
file name without an extension as an argument. The path to the file beintewiig determined
by the DataFolder property of the logger. The end of writing to the file occurs when the
StopLoggingnethod of the logger is called (Figure 10). Immediately after the successfubktart

the recording, the logger sets the value of theggingproperty to true, and after the end of the
recording tto false.

n"+ Datalogger 5 "% Datalogger ,,
StartLoggingToFile» Stoplogging
’ FileName

[Data_%Y_%m_%d_%H_%M_%S |-Em

(Tt &~ bibe |FileName
gl.
|+

FigurelO: Starting and Stopping Writing Data to a File in LabVIEW

The logger can automatically end recording to the file if one of theiotise conditions set
before the start of recording is met. These conditions include exogethe file size in
megabytes, exceeding the file recording time, and exceeding the numbecaifded frames. An
example of setting these conditions through the properties of the registrpresented below:

» =¢ Datalogger
DataFolder [Fesd# DataFolder |
MaxLoggedFrames *MaxLoggedFrames
3
’
Loggercontrols-r LimitLoggingTime fr » LimitLoggingTime
LimitNumFrames [* LimitNumFrames
LimitFileSize o » LimitFileSize
Selected devices [~I=T8Hr DevicesMask

Figurell: Configuring the Logger to Stop Conditional Recording inlEsV

Data recording to a file can be controlled using the propersieges of the loggerProgress
t recording progress in percenkileSizet the current size of the data file in megabytes,
NumLoggedFramed the current number of recorded ADC data frames andgingTimet the
current time from the beginning of the file recording in seconds Frogressproperty shows
the actual progress of the recording only if one of the restrictive condtidiaxFileSizeor
MaxLoggedFramess specified, and the progress refers to the one closest to tli#irhént of
the condition. The recording timeoggingTimds not used to calculate the recording progress,
since the time control is intended only for the emergency stop of recgrtbrthe file as a result
of some unforeseen situation, for example, due to non-receipt of data wheroptical trigger
signal is turned off.

T|» =t DataLogger 3 ’ﬁ'L'a
Progress ¥ Progress
Logging g Logging
’ ptb== =27 | ogger status
»
NumloggedFrames?® NumloggedFrames

Figurel2: Checking the Status of Writing to a File in LabVIEW

The examples\labview\ folder contains an example filesave.vi that implementshitreea
writing of ADC data to a file. Also in this folder is an example fileplayhich reads data from a
data file and displays it on a graph. In the reference sectiorhisf tutorial, you can find a
description of all the properties and methods of thetalLoggerclass, as well as a description of
the data file format.

Recording Data to a File in Visual Studio C#

Data is written to a file using theatal.oggeiclass. Instances of this class (data loggers) are
created by the user using thereateLoggemethod of the device manager (th&eviceManager
class):

logger = deviceManager.CreateLogger("FileSave");

Call theCreateLoggemethod only after connecting to devices, otherwise the method
returns an empty reference. The method returns a reference to the createa ldgger, and its
arguments are the name of the created data logger and the length of the qukaa writing to
memory, which is discussed in the section. The name is used to sasettings of the logger in
the configuration file. The user can create an arbitrary number of data loggers |d&tgsr can
write data from one or several devices to binary files with the RAW extension, andldegges
can receive data from the same device.

The logger starts writing ADC data to a file after callingtistLoggingToFilenethod with a
file name without extension as an argument:

logger.StartLoggingToFile("Data" + DateTime.Now.ToString("yyyy- MMdd HH- mrrss"));

The path to the file being written is determined by tbetaFolderproperty of the logger.
The end of writing to the file occurs when tBé¢opLogginanethod of the logger is called:

logger.StopLogging();

When recording starts and stops, the logger generates theStartLoggingand
OnStopLoggingvents, respectively. Events have a standard signature and can be used to change
the locking of control buttons.

The logger can automatically end recording to the file if one of theiotise conditions set
before the start of recording is met. These conditions include exogethe file size in

megabytes, exceeding the file recording time, and exceeding the nuofb®rcorded frames.
Below is an example of assigning these properties using the controle afaim window:

logger.LoggingTimeout = (double)udLoggingTimeout.Value;
logger.MaxLoggedFrames = (int)JudNumLoggedFrames.Value;
logger.MaxFileSize = (double JudMaxFileSize.Value;
logger.LimitLoggingTime = cbLimitLoggingTime.Checke d;
logger.LimitNumFrames = cbLimitNumFrames.Checked;
logger.LimitFileSize = cbLimitFileSize.Checked;

Data recording to a file can be controlled using the propersieeges of the loggerProgress
t recording progress in percenkileSize t the current size of the data file in megabytes,
NumLoggedFramed the current number of recorded ADC data frames andgingTimet the
current time from the beginning of the file recording in seconds Frogressproperty shows
the actual progress of the recording only if one of the restrictive coobtMaxFileSizeor
MaxLoggedFramess specified, and the progress refers to the one closest to thidirhént of
the condition. The recording timeoggingTimds not used to calculate the recording progress,
since the time control is intended only for the emergency stop of reogrth the file as a result
of some unforeseen situation, for example, due to non-receipt of data wheroptical trigger
signal is turned off. Below is the display of the status of the loggne main window:

labelLoggedFrames.Text = $"Logged frames : {logger.NumLoggedFrames} ";
labelLoggingTime.Text = $"Logging time: {logger.LoggingTime: F2} s";
labelFileSize.Text = $"File size: {logger.FileSize: F2} MB";
labelProgress.Text = $"Progress: {logger.Progress} %"

The table below shows the code from a sample FileSave project fthen
examples\visual\SdkExamples\ folder that implements the above writing dasafile. Also, in
this folder is the FilePlay project, which reads data from the dis& and displays it on the chart.
In the reference section of this tutorial, you can find a descriptibrall the properties and
methods of theDatal.oggeiclass, as well as a description of the data file format.

The code in the table below shows an example of using the Deviceadéan
OnPropertyChange@vent. This event is triggered when one of the properties of theabbiet
is the source of the event changes. In this case, you are only interested in cladtegdsading
property values from the configuration file. The handler for this event has argtsnebject
sender (always a reference to the device manager) and a reference e to an instarnhe of
EmptyEventArgsclass, which has &ourceproperty - the event source, in this caseyurce
should contain a reference to the user-created datalogger. Below is an éxavhhow to
initialize the controls of the main window with the values read frttma configuration file after
creating the data logger:

private void OnPropertyChangedEventHandler(object sender, EmptyEventArgs e)
{

if (e.Source == logger)

{
udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;
udMaxFileSize.Value = (decimal)logger.MaxFileSize;

udNumLoggedFrames.Value = logger.MaxLoggedFrames;
cbLimitLoggingTime.Checked = logger.LimitLoggingTim e;
cbLimitNumFrames.Checked = logger.LimitNumFrames;
cbLimitFileSize.Checked = logger.LimitFileSize;

labelFolder.Text = logger.DataFolder;

Table 6: Visual C# programs to write data to a file

using PhotoSoundClasses;
using System;
using System.Windows.Forms;
namespaceFileSave
{
public partial class FileSave :Form
{
public FileSave ()
{
InitializeComponent();
chartl.Series.Clear();
var series = chartl.Series.Add("ADC1/CH1";
series.ChartType =
System.Windows.Forms.DataVisualization.Charting.Ser iesChartType.FastLine;
this .Enabled = false ;
}
private DeviceManager deviceManager = null ;
private short [] PlotBuffer = null ;
private void FileSave_Load(object sender, EventArgs e)
{
deviceManager = new DeviceManager();
deviceManager.OnConnect += OnConnectEventHand ler;
deviceManager.OnError += OnErrorEventHandler;
deviceManager.Connect();
}
private void timerl_Tick(object sender, EventArgs e)
{
int samples = deviceManager.GetPlotData(PlotBuffer, PI otBuffer.Length, O, 0, 0);
if (samples > 0)
{
chartl.Series[0].Points.Clear();
chartl.Series[0].Points.DataBindY/(newArraySegment< short >(PlotBuffer, 0,
samples));
labelLoggedFrames.Text = $"Logged frames: {logger.NumLoggedFrames} ";
labelLoggingTime.Text = $"Logging time: {logger.LoggingTime: F2} s";
labelFileSize.Text = $"File size: {logger.FileSize: F2} MB
labelProgress.Text = $"Progress: {logger.Progress} %"
}
private DatalLogger logger = null ;
private void OnConnectEventHandler(object sender, EventArgs €)
PlotBuffer = new short [deviceManager.MaxSamplesToCapture];
logger = deviceManager.CreateLogger("FileSave");
deviceManager.OnPropertyChanged += OnProperty ChangedEventHandler;

timerl.Start();
this .Enabled = true ;

private void OnPropertyChangedEventHandler(object sender, EmptyEventArgs €)
{

if (e.Source == logger)

{
udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;
udMaxFileSize.Value = (decimal)logger.MaxFileSize;
udNumLoggedFrames.Value = logger.MaxLoggedF rames;
cbLimitLoggingTime.Checked = logger.LimitLo ggingTime;
cbLimitNumFrames.Checked = logger.LimitNumF rames;
cbLimitFileSize.Checked = logger.LimitFileS ize;
labelFolder.Text = logger.DataFolder;
}
}
private void OnErrorEventHandler(object sender, MessageEventArgs €)
{
MessageBox.Show($"{e.Source.ToString()} error: {e.Message} ");
}
private void FileSave_FormClosed(object sender, FormClosedEventArgs e)
{
deviceManager.Disconnect();
}
private void buttonBrowse_Click(object sender, EventArgs e)
{
folderBrowserDialogl.SelectedPath = logger.Da taFolder;
if (folderBrowserDialogl.ShowDialog() == DialogResult .OK)
logger.DataFolder = folderBrowserDialogl.Se lectedPath;
}
private void buttonStart_Click(object sender, EventArgs e)
{
logger.StartLoggingToFile("Data" + DateTime.Now.ToString("yyyy- MMdd HH- mm
ss");
}
private void buttonStop_Click(object sender, EventArgs e)
{
logger.StopLogging();
}

private void udMaxFileSize_ValueChanged(object sender, EventArgs e)

{

logger.MaxFileSize = (double JudMaxFileSize.Value;
udMaxFileSize.Value = (decimal)logger.MaxFileSize;

}

private void udNumLoggedFrames_ValueChanged(object sender, EventArgs e)

{

logger.MaxLoggedFrames = (int JudNumLoggedFrames.Value;
udNumLoggedFrames.Value = logger.MaxLoggedFra mes;

}

private void udLoggingTimeout_ValueChanged(object sender, EventArgs e)

{
logger.LoggingTimeout = (double)udLoggingTimeout.Value;

udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;

}

private void cbLimitNumFrames_CheckedChanged(object sender, EventArgs e)

{

logger.LimitNumFrames = cbLimitNumFrames.Chec ked;

}

private void cbLimitLoggingTime_CheckedChanged(object sender, EventArgs €)
{

logger.LimitLoggingTime = cbLimitLoggingTime. Checked;
}

private void cbLimitFileSize_CheckedChanged(object sender, EventArgs €)
{
logger.LimitFileSize = cbLimitFileSize.Checke d;
}
}
}

ADC AFE5818 setupMATLAB

The AFE5818ADC is configured using thé-E5818and AFE5818Vcelasses. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored il\the58 1§roperty of the same name
of the device manager (the DeviceManager class). Before connecting devices, thigyproper
contains an empty reference (null).

To change any parameter, you just need to assign a new value to the correspprapedgy
of the class instance, for examptev. AFE5818.LowNoiseMode= true. This value will be
automatically transferred to the device via the system bus, for example USBJsmdaved in
memory for later writing the settings to the configuration file. Someapaeters are represented
by enumerated €num) properties, for example, theowerMode property of theAFE5818Vca
class. Only certain values can be assigned to such properties, whidle caewed using the
MATLAB:numerationcommand. An example of using this command is below:

>> enumeration (dev.AFE5818.Vcal.PowerMode)
Enumeration members for class 'PhotoSoundClasses.AFE5818Vca+PowerModes':

LowNoise
LowFPower
MediumPower

In order to assign any value to the enum property in MATLAB, youfirsigtbtain a list
of values in a variable, and then use this variable with the index ofdbiead! value. An example
of obtaining such lists for the enum property of th& E5818Vcelass is presented below:

PowerMode = System.Enum.GetValues(dev.AFE5818.Vcal.PowerMode.GetType);

HpfCutoffFreq =
System.Enum.GetValues(dev.AFE5818.Vcal.HpfCutoffFreq.GetType);

LpfCutoffFreq =
System.Enum.GetValues(dev.AFE5818.Vcal.LpfCutoffFreq.GetType);
TgcAttenuation =
System.Enum.GetValues(dev.AFE5818.Vcal.TgcAttenuation.GetType);
LnaGlobalGain =
System.Enum.GetValues(dev.AFE5818.Vcal.LnaGlobalGain.GetType);

PgaGain = System.Enum.GetValues(dev.AFE5818.Vcal.PgaGain.GetType);

Below is an example of setting up th¢-E5818ADC. In order not to transmit data to the
device every time one parameter is changed, first you need to assign the fzde to the
AutoUpdate property, and after changing all the parameters, you need to callGhefigure

method of theAFE5S81&lass.

dev . AFE5818.AutoUpdate =false ;
dev.AFE5818.ConfiguredAdcMask = 2*dev.MaxAdcPerDevice
dev.AFE5818.ConfiguredDevicesMask = 2*dev.DevicesCount
dev.AFE5818.VcalEqualsVca2 = true;
dev.AFE5818.Vcal.HpfCutoffDivided = false;
dev.AFE5818.Vcal.LowNoiseMode = true;
dev.AFE5818.Vcal.PgaHpfDisabled = false;
dev.AFE5818.Vcal.LnaHpfDisabled = false;
dev.AFE5818.Vcal.PgaClampEnabled = true;
dev.AFE5818.Vcal.F5MHzLpfEnabled = true;
dev.AFE5818.Vcal.TgcAttEnabled = true;
dev.AFE5818.Vcal.PowerMode = PowerMode(2);
dev.AFE5818.Vcal.HpfCutoffFreq = HpfCutoffFreq(2);
dev.AFE5818.Vcal.LpfCutoffFreq = LpfCutoffFreq(2);
dev.AFE5818.Vcal.TgcAttenuation = TgcAttenuation(2);
dev.AFE5818.Vcal.LnaGlobalGain = LnaGlobalGain(2);
dev.AFE5818.Vcal.PgaGain = PgaGain(2);
dev.AFE5818.Configure;

_1,

Only the basic parameters of the ADC can be changed using the properties/dfFE5818
and AFE5818Vcelasses. All other parameters can be edited in the AFE5818.xIsm file located in
the doc SDK folder. After finishing editing, you need to chek'Create ini file" button on the
"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLibs\Dellee\When
the device is turned on for the first time, a new file will be leddnto the device and the ADC

will work with the new parameters.

The table below shows the script code afe5818.m from the examples\matlat&rfolvhich
implements the ADC setup described above. And in the reference settilois manual, you can
find a description of all the properties and methods of theE581&ndAFEB818Vcaclasses.

Table7: Example of the AFE5818 ADC configuration in MATLAB

filename = mfilename(fullpath’);

app_path = fileparts(filename);

asm_path = fullfile(app_path, . \.. \ x64\ PhotoSoundClasses.dll'
asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...’);
addlistener(dev, 'OnError' ,@onerror);
dev.Connect;

);

while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);
end

if dev.Connected
disp('Successfully connected to device');

PowerMode = System.Enum.GetValues(dev.AFE5818.Vcal.PowerMode.GetType);

HpfCutoffFreq =
System.Enum.GetValues(dev.AFE5818.Vcal.HpfCutoffFreq.GetType);

LpfCutoffFreq =
System.Enum.GetValues(dev.AFE5818.Vcal.LpfCutoffFreq.GetType);

TgcAttenuation =
System.Enum.GetValues(dev.AFE5818.Vcal.TgcAttenuation.GetType);

LnaGlobalGain =
System.Enum.GetValues(dev.AFE5818.Vcal.LnaGlobalGain.GetType);

PgaGain = System.Enum.GetValues(dev.AFE5818.Vcal.PgaGain.GetType);

dev.AFE5818.AutoUpdate = false;

dev.AFE5818.ConfiguredAdcMask = 2*dev.MaxAdcPerDevice -1;
dev.AFE5818.ConfiguredDevicesMask = 2*dev.DevicesCount -1
dev.AFE5818.VcalEqualsVca2 = true;

dev.AFE5818.Vcal.HpfCutoffDivided = false;
dev.AFE5818.Vcal.LowNoiseMode = true;
dev.AFE5818.Vcal.PgaHpfDisabled = false;
dev.AFE5818.Vcal.LnaHpfDisabled = false;
dev.AFE5818.Vcal.PgaClampEnabled = true;
dev.AFE5818.Vcal.F5MHzLpfEnabled = true;
dev.AFE5818.Vcal.TgcAttEnabled = true;

dev.AFE5818.Vcal.PowerMode = PowerMode(2);
dev.AFE5818.Vcal.HpfCutoffFreq = HpfCutoffFreq(2);
dev.AFES5818.Vcal.LpfCutoffFreq = LpfCutoffFreq(2);
dev.AFE5818.Vcal.TgcAttenuation = TgcAttenuation(2);
dev.AFE5818.Vcal.LnaGlobalGain = LnaGlobalGain(2);
dev.AFE5818.Vcal.PgaGain = PgaGain(2);

dev.AFE5818.Configure;

data = NET.createArray('System.Int16' ,dev.MaxSamplesToCapture);
adc = 0;

chan =0;

fig = figure(‘Name' , 'Plot data example');

while isvalid(fig)
samples = dev.GetPlotData(data,data.Length,0,adc,chan);
if samples>0
tmp = int16(data);
plot(tmp(1:samples));
end
pause(0.1);
end
else
disp('Failed to connect to device');
end

dev.Disconnect;
disp('Disconnected');

ADC AFE5818 setupLabVIEW
The AFE5818ADC is configured using the-E5818and AFES818Vcelasses. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored im\the581%roperty of the same name
of the device manager (the DeviceManager class). Before connecting devices, trastyprop
contains an empty reference (null).

To change any parameter, you just need to assign a new value to the correspprapegy
of the class instance, as shown in the figures below. This valuegevélitomatically transferred
to the device via the system bus, for example USB, and also saved in memory foritatgrtiae
settings to the configuration file. In LabVIEW, instead of making your own Jsdnge handler
for each control, you can update multiple properties in a comrhandler. Since the user can
change the value of only one control at a time, there will be only one vedue in the handler.
An internal check in the class will reveal this new value and thangsttill be transferred to the
device via the system bus once.

Figurel3 Changing the Properties of the AFE6818 and AFE5818Vca Classes in LabVIEW

Each class property has a certain range of valid values. When you assigmta egbroperty,
it is validated and the property is changed only if the neweaun that range. Therefore, when
creating a graphical user interface, you should read the property immalgiafter assignment
and update the corresponding control with the read value. So, the wiebe able to see that
the value entered by him is incorrect and it was not saved and wasariferred to the device.
The pictures below show how new property values can be read.

Figurel4. Reading Properties of the AFE5818 and AFE5818Vca Classes in LabVIEW.

Only the basic parameters of the ADC can be changed using the propertres/AdfES818
and AFE5818Vcelasses. All other parameters can be edited in the AFE5818.xIsm file located in
the doc SDK folder. After finishing editing, you need to chiek'Create ini file" button on the
"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLiltg\Dadier. When
the device is turned on for the first time, a new file will be leddnto the device and the ADC
will work with the new parameters.

The examples\labview\ folder contains an example afe5818.vi that implentaetsADC
setup described above. And in the reference section of this manual, yoiincka description of
all the properties and methods of theFE581&@andAFES818Vcelasses.

ADC AFE5818 setupVisual Studio C#

TheAFES818ADC is configured using tAé-ES81@nd AFE5818Vcelasses. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored ilAfAe581§roperty of the same name
of the device manager (the DeviceManager class). Before connecting devices, thastyprop
contains an empty reference (null).

To change any parameter, you just need to assign a new value to the correspprapegy
of the class instance, for exampleviceManager. AFE5818.LowNoiseModetrue. This value
will be automatically transferred to the device via the system bus, for el@td@gB, and also
saved in memory for later writing the settings to the configuration filemEde it easier to work
with class properties, you can use theopertyGrd control. If you assign it to theelectedObject
property a reference to the AFES5818 class: propertyGridl.SelectedObject =
deviceManager.AFE58]1&hen you can edit all the properties of this class andARé&5818Vca
class for thev/caland\Vca2properties. After the user has assigned a new value to a property,
the PropertyGridcontrol writes the property and then reads it back and displays ¢lael value

in the window. Thus, the check for the range of valid values iopee&d automatically. In
addition, thePropertyGrid generates lists for enumerated properties from which the user can
select the desired value.

Only the basic parameters of the ADC can be changed using the properties/dtia&18
and AFE5818Vcelasses. All other parameters can be edited in the AFE5818.xIsm file located in
the doc SDK folder. After finishing editing, you need to chek'Create ini file" button on the
"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLibs\Dellee\When
the device is turned on for the first time, a new file will be leddnto the device and the ADC
will work with the new parameters.

The table below shows the code from the example project AFE5818_ AFEB&B2hE
examples\visual\SdkExamples\ folder, which implements the ADC setup descritpezl &md in
the reference section of this guide, you can find a descriptionl @fi@lproperties and methods
of the AFE581@andAFEB818V/caclasses.

Table 8: Sample Visual C# Program for Managing Data Collection

using PhotoSoundClasses;
using System;

using System.Windows.Forms;

namespace AFE5818 AFE5832

{

public partial class AFE5818 AFE5832 Form

public AFE5818_AFE583(

InitializeComponent();

chartl.Series.Clear();

var series = chartl.Series.Add("ADC1/CH1Y;
series.ChartType =
System.Windows.Forms.DataVisualization.Charting.Ser iesChartType.FastLine;
}
private DeviceManager deviceManager = null ;
private short [] PlotBuffer = null ;

private void AFE5818 AFE5832 Load(bject sender, EventArgs e)

deviceManager = new DeviceManager();
deviceManager.OnConnect += OnConnectEve ntHandler;
deviceManager.OnError += OnErrorEventHa ndler;

deviceManager.Connect();

private void timerl_Tick(object sender, EventArgs e)

int samples = deviceManager.GetPlotData(PlotBuffer, PI otBuffer.Length, O,
0, 0);
if (samples > 0)
{
chartl.Series[0].Points.Clear();
chartl.Series[0].Points.DataBindY/(newArraySegment< short >(PlotBuffer,
0, samples));
}

private void OnConnectEventHandler(object sender, EventArgs e)

PlotBuffer = new short [deviceManager.MaxSamplesToCapture];

timer1.Start();

propertyGridl.SelectedObject = deviceMa nager.AFE5818;

rbAFE5818.Checked = true ;

private void OnErrorEventHandler(object sender, MessageEventArgs €)

MessageBox.Show($" {e.Source.ToString()} error: {e.Message} ");

private void AFE5818 AFE5832_ FormClosed(object sender, FormClosedEventArgs e)

deviceManager?.Disconnect();

private void rbAFE5818_CheckedChanged(object sender, EventArgs e)

if (deviceManager.Connected)

RadioButton rb = sender as RadioButton;
if (rb ==rbAFE5818)
propertyGridl.SelectedObject = deviceManager.AFE5818;
else if (rb ==rbAFE5832)
propertyGridl.SelectedObject = deviceManager.AFE5832;

ADC AFESR2 setupin Matlab
The AFE5832 ADC is configured using/he583Zand AFES832Die classes. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored il\the583%roperty of the same name
of the device manager (th®eviceManagerclass). Before connecting devices, this property
contains a null reference.

To change any parameter, you just need to assign a new value to thesponding
property of the class instance, for exampllev. AFE583ZnableAttenuatorHpf= true This value
will be automatically transferred to the device via the system bus, for el@td®B, and also
saved in memory for later writing the settings to the configuration fleme parameters are
represented by enumerated properties, for example, thitgenuatorHpfCornerproperty of the
AFE583Zlass. These properties can only be assigned specific values, whiah\dawéd using
the MATLAEB:numeration command. An example of using this command is below:

In order to assign any value to the enum property in Matlab, you musstget a list of values
in a variable, and then use this variable with the index of the desirecev@ln example of

obtaining such lists for enum properties of thé¢-E5832and AFES832dieclasses is presented
below:

AttenuatorHpfCorner =

System.Enum.GetValues(dev.AFE5832.AttenuatorHpfCorner.GetType);
LpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.0dd.LpfCutoffFreq.GetType);
HpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.0dd.HpfCutoffFreq.GetType);

Below is an example of setting up tA¢-E5832ADC. In order not to transfer data to the
device every time one parameter is changed, first you need to seftheUpdate property to

false, and after changing all the parameters, you need to call Glafigure method of the
AFE581&lass.

dev.AFE5832.AutoUpdate = false;

dev.AFE5832.ConfiguredAdcMask = 2*dev.MaxAdcPerDevice -1
dev.AFE5832.ConfiguredDevicesMask = 2”*dev.DevicesCount -1
dev.AFE5832.EnableAttenuatorHpf = true;
dev.AFE5832.AttenuatorHpfCorner = AttenuatorHpfCorner(1);
dev.AFE5832.0ddEqualEven = true;

dev.AFE5832.0dd.LpfCutoffFreq = LpfCutoffFreq(1);
dev.AFE5832.0dd.HpfCutoffFreq = HpfCutoffFreq(1);
dev.AFE5832.0dd.DtgcGain = 30;

dev.AFE5832.0dd.EnableLnaHpf = true;
dev.AFE5832.0dd.LowPowerMode = false;
dev.AFE5832.0dd.EnableDtgcAttenuator = true;

dev.AFE5832.Configure;

Only the basic parameters of the ADC can be changed using the propertes/AfFES832
and AFE5832Dielasses. All other parameters can be edited in the AFE5832.xIsm filedocat
the doc SDK folder. After finishing editing, you need to thiek'Create ini file" button on the
"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLibs\Deldee\When

the device is turned on for the first time, a new file will be leddnto the device and the ADC
will work with the new parameters.

The table below shows the afe5832.m script code from the examples\mdibédidr, which
implements the ADC setup described above. And in the reference sectiors gfutikdie, you can
find a description of all the properties and methods of thieE583andAFES832Dielasses

Table 9 Example of MATLAB Script for AFE5832 ADC setup

filename = mfilename(fullpath’);

app_path = fileparts(filename);

asm_path = fullfile(app_path, . \.. \ x64\ PhotoSoundClasses.dll');
asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev, '‘OnError' ,@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);

end

if dev.Connected

disp('Successfully connected to device');

AttenuatorHpfCorner =
System.Enum.GetValues(dev.AFE5832.AttenuatorHpfCorner.GetType);

LpfCutoffFreq =
System.Enum.GetValues(dev.AFE5832.0dd.LpfCutoffFreq.GetType);

HpfCutoffFreq =
System.Enum.GetValues(dev.AFE5832.0dd.HpfCutoffFreq.GetType);

dev.AFE5832.AutoUpdate = false;

dev.AFE5832.ConfiguredAdcMask = 2*dev.MaxAdcPerDevice -1;
dev.AFE5832.ConfiguredDevicesMask = 2~dev.DevicesCount - 1;
dev.AFE5832.EnableAttenuatorHpf = true;

dev.AFE5832.AttenuatorHpfCorner = AttenuatorHpfCorner(1);
dev.AFE5832.0ddEqualEven = true;

dev.AFE5832.0dd.LpfCutoffFreq = LpfCutoffFreq(1);
dev.AFE5832.0dd.HpfCutoffFreq = HpfCutoffFreq(1);

dev.AFE5832.0dd.DtgcGain = 30;
dev.AFE5832.0dd.EnableLnaHpf = true;
dev.AFE5832.0dd.LowPowerMode = false;
dev.AFE5832.0dd.EnableDtgcAttenuator = true;
dev.AFE5832.Configure;

data = NET.createArray('System.Int16' ,dev.MaxSamplesToCapture);
adc = 0;

chan = 0;

fig = figure('‘Name' , 'Plot data example')

while isvalid(fig)
samples = dev.GetPlotData(data,data.Length,0,adc,chan);
if samples>0
tmp = intl6(data);
plot(tmp(1:samples));
end
pause(0.1);
end
else
disp('Failed to connect to device');

end

dev.Disconnect;

disp('Disconnected’);

AFB832setupin LabVIEW
The AFE5832 ADC is configured using*thE583and AFE5832Dielasses. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored im\the583property of the same name
of the device manager (th®eviceManagerclass). Before connecting devices, this property
contains a null reference.

To change any parameter, you just need to assign a new value to the correspprapegy
of the class instance, as shown in the figures below. This valugevélitomatically transferred
to the device via the system bus, for example USB, and also saved in memory foritatgrtiae
settings to the configuration file. In LabVIEW, instead of making your own Jsdnge handler
for each control, you can update multiple properties in a comrhandler. Since the user can
change the value of only one control at a time, there will be only one vedue in the handler.
An internal check in the class will reveal this new value and thangsttill be transferred to the
device via the system bus once.

Figurel5: Modifying the Properties of the AFE5832 and AFE5832Die ClassedEW.abV

Each class property has a certain range of valid values. When you assigmta egbroperty,
it is validated and the property is changed only if the neweadun that range. Therefore, when
creating a graphical user interface, you should read the property immadgiafter assignment
and update the corresponding control with the read value. So, the wikbe able to see that
the value entered by him is incorrect and it was not saved and wasaritferred to the device.
The pictures below show how new property values can be read.

Figurel6 Reading Properties of the AFE5832 and AFES5832Die Classes in LabVIEW

Only the basic parameters of the ADC can be changed using the properties/dffE5832
and AFE5832Dielasses. All other parameters can be edited in the AFE5832.xIsm filedacat
the doc SDK folder. After finishing editing, you need to chek'Create ini file" button on the
"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLiltg\Dadier. When
the device is turned on for the first time, a new file will be leddnto the device and the ADC
will work with the new parameters.

The examples\labview\ folder contains an example afe5832.vi that implentbetsADC
setup described above. And in the reference section of this guidecgodind a description of
all the properties and methods of theFE583andAFES832Dielasses.

AFB832setupin Visual Studio C#

The AFE5832 ADC is configured usingAthE583Zand AFES832Dielasses. Instances of
these classes are not created by the user, but by the device manager aftessstully connecting
to devices. The link to the created instances is stored il\the583%property of the same name
of the device manager (th®eviceManagerclass). Before connecting devices, this property
contains a null reference

To change any parameter, you just need to assign a new value to the correspprapegy
of the class instance, for examplev. AFE5832EnableAttenuatorHpf= true This value will be
automatically transferred to the device via the system bus, for example USBJsmdaved in
memory for later writing the settings to the configuration file. To makeaisier to work with
class properties, you can use tReopertyGrid control. If you assign it to th8electedObject
property a reference to the AFE5832 class: propertyGridl.SelectedObject =
deviceManager.AFE583#hen you can edit all the properties of this class andAR&5832Die
class for theddd andEvenproperties. After the user has assigned a new value to a property, the
PropertyGrid control writes the property and then reads it back and displays tlaél realue in
the window. Thus, the check for the range of valid values is perfoautamatically. In addition,
the PropertyGridgenerates lists for enumerated properties from which the usersedact the
desired value.

Only the basic parameters of the ADC can be changed using the properties/dfE5832
and AFE5832Dielasses. All other parameters can be edited in the AFE5832.xIsm filedogat
the doc SDK folder. After finishing editing, you need to chek'Create ini file" button on the
"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLibs\Delklee\When
the device is turned on for the first time, a new file will be leddnto the device and the ADC
will work with the new parameters.

The table () shows the code from the example project AFE5818 AFE583Bdreramples\
visual\SdkExamples\ folder, which implements the ADC setup descrdmee aln the reference
section of this guide, you can find a description of all the prtgs and methods of th FE5832
andAFE5832Dielasses.

Real-time data processing in MATLAB

Data processing in real time in the MATLAB environment is discussed bslog the
example of constructing a sonogram. As a result of processing, the user canigee image on
the screen displaying information about the signal in the sensors of theeobeh ultrasound
sensor.

Receiving ADC data for processing is carried out usingahe_oggeiclass. Instances of this
class (data loggers) are created by the user using@theteLoggemethod of the device manager
(the DeviceManagerclass):

logger =dev . CreateLogger (' RealTime ',1);

Call theCreateLoggemethod only after connecting to devices, otherwise the method
returns an empty reference. The method returns a reference to the createa ldgger, and its
arguments are the name of the created data logger and the length of the qubage writing to
memory. The name is used to save the settings of the recorder in the confgurfde. The
queue length is measured in ADC data frames and can be 1 or more. keueawjth losses, as
arule, 1 is sufficient, and for queues without losses, this vathogild be selected experimentally
so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, whefemnine the duration
of data entry and the device from which the data is read:
logger.LimitLoggingTime = false;

logger.LimitNumFrames = false;
logger . DevicesMask =1;

The logger starts writing ADC data to a queue in memory immediatedy edtlling its
StartLoggingToMemory(LossyQueumethod, whereL_ossyQueue-true for lossy queues:

logger . StartLoggingToMemory (true);

Before retrieving data from the queue, you need to prepare a bufferHent in memory.
This can be done using the MatlalxT.create Arragommand. The amount of allocated memory
can be set to the maximum, and then the actual amount of data can eméted:

FrameBuffer =
NET.createArray('System.Int16',dev.MaxSamplesToCapture*dev.MaxChannelsToCaptu
re);

TheGetFramemethod is directly involved in retrieving data from memory:

[valid,channels,samples,frame_num,trig_time,trig_src,sample_rate] =
logger.GetFrame(FrameBuffer,false);

The input arguments of the method are the allocated data buffer in memodythe sign of
frame transposition. If it isrue, then the first index (row) specifies the sample number (time),
and the second (column) specifies the channel number. Otherwise, the lineed¢fia channel,
and the column defines the time. When called, the method expects aath if the timeout has
not expired, then it returnssalid = true and fills the rest of the output arguments with the
parameters of the data frame. The output parameters of the data frame are tesci more
detail in the reference section.

The construction of a sinogram is reduced to the permutation of tha daaccordance with
the channel map. The channel map is an ordered array with ADC charmbkrs) the array
index corresponds to the channel number of the ultrasound sensor:

tmpData = single(FrameBuffer);
frame = reshape(tmpData(1:(channels*samples)),samples,channels);
mapped = frame(:,chmap);

At the end of processing, the result is scaled by the range of valuedisplayed as an image
with a specified color palette on the screen:

image = imagesc('XData' ,l:channels, 'YData' ,l:samples, 'CData' |,
mapped/max(max(mapped)), [-11));

The table below shows the realtime.m script code from the examples \ matldbrfaihich
implements the data processing described above. In the reference section afitivgl, you
can find a description of all the properties and methods offlzal oggeiclass.

Tablel0: An example MATLAB script for real-time processing of ADC data

filename = mfilename(fullpath’);

app_path = fileparts(filename);

asm_path = fullfile(app_path, . \.. \ x64\ PhotoSoundClasses.dll');
asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');
addlistener(dev, 'OnError' ,@onerror);
dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure
pause(0.1);
end

if dev.Connected
disp('Successfully connected to device');
image = [[;

if dev.Devices(1).SensorsMapLoaded

fig = figure('‘Name' , 'Plot data example');
set(gca, ‘nextplot’ , 'replacechildren’ ,'YDir' | 'reverse');
chmap = double(dev.Devices(1).ChannelsMap)+1;
logger = dev.CreateLogger('‘RealTime' ,1);
logger.DevicesMask = 1;
logger.LimitLoggingTime = false;
logger.LimitNumFrames = false;
FrameBuffer =
NET.createArray('System.Int16' ,dev.MaxSamplesToCapture*dev.MaxChannelsToCap

ture);
logger.StartLoggingToMemory(true);

while isvalid(fig)

[valid,channels,samples,frame_num,trig_time,trig_src,sample_rate] =
logger.GetFrame(FrameBuffer,false);
if valid

tmpData = single(FrameBuffer);

frame =
reshape(tmpData(1:(channels*samples)),samples,channels);

mapped = frame(;,chmap);

xlim([0 channels])

ylim([O samples])

colorbar
xlabel('‘Channels’)
ylabel(‘Samples')
if isempty(image)
image =
imagesc('XData' ,l:channels, "YData' ,l:samples, 'CData' ,
mapped/max(max(mapped)), [-11));
else
set(image, ‘CData’ ,mapped/max(max(mapped)));
end
end
pause(0.1);
end
else
disp('Sensors map was not assigned!);
end
else
disp('Failed to connect to device');
end

dev.Disconnect;
fprintf('\ nDisconnected \n');

Real-time data processing in LabVIEW

Data processing in real time in the Labview environment is discussed beiogy the
example of building a sonogram. As a result of processing, the user can see emade on the
screen displaying information about the signal in the sensors of the ctethattrasound sensor.

Receiving ADC data for processing is carried out usingahe_oggeiclass. Instances of this
class (data loggers) are created by the user using theateLoggermethod of the
DeviceManageias shown in the figure below.

Figurel7: Creating and Configuring a Data Logger in LabVIEW

Call theCreateLoggemethod only after connecting to devices, otherwise the method
returns an empty reference. The method returns a reference to the createa Idgger, and its
arguments are the name of the created data logger and the length of the qubaga writing to
memory. The name is used to save the settings of the recorder in the confagufde. The
gueue length is measured in ADC data frames and can be 1 or more. keuewjth losses, as
arule, 1 is sufficient, and for queues without losses, this vsthoeild be selected experimentally
so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, whiefeminine the duration
of data entry and the device from which the data is read. Afiat,tyou can start writing ADC
data to the memory queue using th&tartLoggingToMemory(LossyQueuajethod, where
LossyQueuetrue for lossy queues (Figuls).

Before retrieving data from the queue, you need to prepare a bufferHent in memory.
The amount of allocated memory can be set to the maximum, and therathgal amount of
data can be determined (Figuid).

Figurel8: Preparing to process data in LabVIEW

The GetFrame method is directly involved in retrieving data from memory. The input
arguments of the method are the allocated data buffer in memory and the efgftame
transposition. If it igrue, then the first index (row) specifies the sample number (time), aed th
second (column) specifies the channel number. Otherwise, the line defisehannel, and the
column defines the time. When called, the method expects data and, ifineout has not
expired, then it returnsalid =true and fills the rest of the output arguments with the parameters
of the data frame. The output parameters of the data frame are described in oeteal in the
reference section. The data copied to the data buffer should beéddin length according to the
output arguments-rameChannelandFrameSampleand converted to a two-dimensional array
for further processing (Figurko).

Figurel9: Retrieving data from memory in LabVIEW

The construction of a sinogram is reduced to the permutation of tha @aaccordance with
the channel map. The channel map is an ordered array with ADC charmbkrs) the array
index corresponds to the channel number of the ultrasound serfagu(el8). The result of the
permutation is scaled by the range of values and displayed as an imagea sbcified color
palette on the screen as shown in the figure above.

The \examples\labview\ folder contains a realtime.vi example that implements Hove
data processing. In the reference section of this tutorial, you candin@scription of all the
properties and methods of thBatalLoggerclass.

Real-time data processing in Visual C#

Data processing in real time in the Visual C# environment is discbete@ using the
example of building a sonogram. As a result of processing, the user can see emade on the
screen displaying information about the signal in the sensors of the ctethattrasound sensor.

Receiving ADC data for processing is carried out usingdhe_oggeiclass. Instances of this
class (data loggers) are created by the user usingtheteLoggemethod of the device manager
(the DeviceManagerclass.

logger = deviceManager.CreatelLogger("RealTime",1);

Call theCreateLoggemethod only after connecting to devices, otherwise the method
returns an empty reference. The method returns a reference to the createa Idgger, and its
arguments are the name of the created data logger and the length of theequdaen writing to
memory. The name is used to save the settings of the recorder in the confgurfde. The
gueue length is measured in ADC data frames and can be 1 or more. Feuewith losses, as
arule, 1 is sufficient, and for queues without losses, this vsthoeild be selected experimentally
so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, whigtemine the duration
of data entry and the device from which data is read:

logger.LimitLoggingTime = false ;
logger.LimitNumFrames = false ;
logger.DevicesMask = 1;

The logger starts writing ADC data to a queue in memory immediatedy edtlling its
StartLoggingToMemory(LossyQueumethod, whereLossyQueue-true for lossy queues:

logger.StartLoggingToMemory(true);

Before retrieving data from the queue, you need to allocate a buffertiem in memory.
The amount of allocated memory can be set to the maximum, and therathgal amount of
data can be determined:

frameBuffer = new short [deviceManager.MaxSamplesToCapture *
deviceManager.MaxChannelsToCapture];

TheGetFrane method is directly involved in retrieving data from memory:

logger.GetFrame(frameBuffer, transposeFrame, out int frameChannles, out int
frameSamples, out uint frameNumber, out double triggerTime, out int triggerSource, out
int sampleRate)

The method input arguments are the allocated data buffer in memory franfeBahd the
transposeFramdlag. If it isrue, then the first index (row) specifies the sample number (time),
and the second (column) specifies the channel number. Otherwise, the lineedéfia channel,
and the column defines the time. When called, the method expects datafdhe iimeout has
not expired, then it returnsrue and fills the output arguments with the parameters of the data
frame. The output parameters of the data frame are described in more detaikimeference
section.

The construction of a sinogram is reduced to the permutation of tha @aaccordance with
the channel map. The channel map is an ordered array with ADC charmbkrs) the array
index corresponds to the channel number of the ultrasound sensor:

int [] map = deviceManager.Devices[0].ChannelsMap;

The result of the permutation is scaled by the range of values and disiéesyan image with
a specified color palette on the screen. Since data processing reqoadsrmance, the
processing code is enclosed in@msafe block:

unsafe

{
byte * row =(byte *)bmpData.Scano0;
int n=0;
for (int f=0;f<bmp.Height; f++)

{
for (int w=0;w<bmp.Width; w++)
row[w] = (byte)Math.Round((frameBuffer[f*frameChannles+map[w]]-mi n)*scale);
row += stride;
}

}

To avoid freezing of the user interface, data processing is carried out in a sepaeste t
the BackgroundWorkerclass. The methods and properties of thetaloggerclass are
ThreadSafe, but they can raise events, such as the Device Managerorevent. If the event
handler uses graphical interface elements, then they should be accessed thraaghvittke
method of these elements. Below is an example of displaying an error messagean®lement
of the Labeltype:

private void OnErrorEventHandler(object sender, MessageEventArgs e)

{
labelFPS.Invoke((MethodInvoker) delegate {labelFPS.Text = $"{e.Source.ToString()}

error: {e.Message} "; });

}

The examples \ visual \ SdkExamples folder contains the RealTime projectjwbliements
the data processing described above. In the reference section of thesiayjtyou can find a
description of all the properties and methods of thetalLoggeiclass.

PhotoSoundClasses.dll Class Library Reference

Capture class

Table 1 Capture Properties and Methods

Name Type Description
Restarts ADC data collection with parameters fr
class properties
SamplesToCapture Integer, 32 bit ~ Number of data collection counts for the ADC chan
FramesPerPacket Integer, 32 bit Number of ADC data frames in one data bus pack
DecimationFactor Integer, 32 bit = ADC thinning factor
Sign of waiting for trigger event before data collecti

Configure method

WaitTrigger Boolean
starts

EnabledAdcMask = Unsigned, 32 bit ADC mask allowed to collect data
A markof automatic transfer of settings to the devic

AutoUpdate Boolean .
when the class properties change

Configure

TheConfiguremethod of theCaptureclass disables the collection of ADC data, then transfers
the settings calculated from the properties of theptureclass to the device via the system bus,
and then enables the collection of ADC data again. The method alsdhsetsutoUpdate
property of theCaptureclass to true.

SamplesToCapture

TheSamplesToCapturproperty of theCaptureclass sets the number of data samples per
ADC channel, which are written to the data frame buffethia device after the acquisition is
started, and then transferred to the PC via the system bus. The maximum nurihbamples
depends on the size of the device framebuffer. To find out the maximum nuaoflsamples for
a specific device, you need to read the value of lthexSamplegroperty of the corresponding
instance of theDeviceclass.

FramesPerPacket

TheFramesPerPackegiroperty of theCaptureclass specifies the number of ADC data frames
in one packet transmitted over the system data bus. Since the PC inteaayafgm has a limited
frequency of operation, the ADC data frames are combined into a pszketluce the interrupt
frequency. This allows you to increase the data transfer rate upadandwidth of the system
bus. On the other hand, the frequency of receiving frames by the usgrqumois reduced by
FramesPerPacket times. This can result in too low the refresh rate omapke the acquisition
is triggered by a trigger event with a low repetition rate. Therefore, inhsoases, the

FramesPerPacketalue should be set equal to 1. In other casessmesPerPacketan be left
equal to 10.

DecimationFactor
TheDecimationFactomproperty of the Capture class controls the decimation of ADC data

samples. If it is equal to 1, then the samples are written to the ddxacee buffer without gaps.
If DecimationFactor= 2, then count 1 is written, then skip recording, then caBirg written, etc.
If DecimationFactor= 3, then only every third sample is recorded. Thus, the samtegf the
output data transmitted to the PC is equal to the sampling ratehef ADC divided by the
DecimationFactor To find out the ADC sampling rate for a specific device, you needdahe
value of theMaxSampleRatgoroperty of the corresponding instance of theeviceclass. This
data decimation can result in aliasing if the input bandwidthhaf ADC is greater than half the
sample rate of the output data. To eliminate this effect, you can adpjesbandwidth of the ADC
low-pass filter (see description of ADC classes below).

WaitTrigger

TheWaitTriggerproperty of theCaptureclass enables or disables waiting for a trigger event
before starting data collection. If waiting is disabled, then a new stastatd collection follows
immediately after the end of the transfer of the previous ADC data frixoma the device buffer
to the PC. If enabled, after the end of the data transfer, a trigger egdirst expected and then
followed by a trigger. If the repetition rate of the trigger events is taghhthen the trigger event
may occur before the end of the data transfer to the PC. Indisée, the data collection will not
start, but the event counter from the trigger will be incrementehd the event skip will be
recorded. The number of missed events can be read fronitteEventgproperty of theDevice
class

EnabledAdcMask

The EnabledAdcMaskproperty of theCapture class sets the ADC chips allowed for data
collection. This property is common to all devices, so the number ofcAPE is determined by
the device with the most installed chips. This number can be fiead the MaxAdcPerDevice
property of the Device ManagerD¢viceManager class). Each bit oEnabledAdcMask
corresponds to one ADC chip, bit O to chip # 1, bit 1 to chip #d®samn. If the bit value is 1,
then the ADC is enabled for data acquisition, otherwise it is tidal reduced number of ADC
chips may be required to reduce the amount of data transferrechtoRC. This allows for faster
transfer times and higher trigger event repetition rates, as well as reducingitleeof data files
when written to disk.

AutoUpdate

The AutoUpdate property of the Captureclass enables or disables automatic transmission
of settings to the device when the properties of theptureclass are changed. If the property
value istrue, then when writing a new value to any of the properties of theptureclass, the
updated settings are automatically transferred to the device. If tr@pprty value idalse, then

you can assign new values to several properties ofihptureclass, and then call theonfigure
method, which will transfer the settings to the device and restore AhgoUpdate property to

true.

Trigger class

Table 2 Properties and methods of the Trigger class

Name

Configure

GetlnputFrequencies

TriggerOutputs
InputNames
SlaveDelays
GeneratorFrequency

ComnectToGenerator

InputsDelay

InputsGuard

EnabledinputsMask
InvertedinputsMask

AutoUpdate

Configure

The Configure method of the Trigger class transfers the settings calculated from the
properties of theTriggerclass to the device via the system bus, and also sets the AutoUpdate

Type

method

method

array
TriggerOutput
Massive string
Integer Array, 3z
bit

Double

Baoolean

Integer, 32 bit

Integer, 32 bit

Unsigned, 32 bit
Unsigned, 32 bit

Boolean

Description
Takes settings from class properties to a syst
bus
Reads from the device on the system bus
frequency of signals at trigger inputs
TriggerOutput Class Array

An array with trigger input names

Array of data acquisition start delays in relation
the signal from the slave HDMI connector
Internal generator frequency, Hz

Sign of permission to use an internal generator
start data collection

Delaying the start of data collection in relation
the signal from the selected trigger or general
input at the clock of the ADC sampling frequen:
Interval of protection against noise at the trigg
inputs in clock cycles of the ADC sampl
frequency.

Trigger input mask allowed to start data collecti
Trigger input mask with negative input polarity
Sign of automatic transmission of settings to t
device when class properties change

property totrue. Although theTriggerclass contains an array of instances of ThggerOutput

class, settings from the properties of theggerOutputclass are not passed to the device. To do
this, theTriggerOutputclass has its owdonfiguremethod and each trigger output is configured

separately.

GetlnputFrequencies

TheUpdatelnputFrequenciesnethod of theTriggerclass reads the signal frequencies at the
trigger inputs from the device via the system bus and returns an array of numkargheisignal
frequencies in hertz.

TriggerOutputs

The TriggerOutputs property of the Trigger class is an array of instances of the
TriggerOutputsclass. The length of the array is equal to the number of trigger outputs amd eac
element of the array corresponds to its own trigger output.

InputNames

ThelnputNamesproperty of theTriggerclass is an array of strings with custom trigger input
names. Strings can contain any descriptive text for the convenience ohigletiuts.

SlaveDelays

TheSlaveDelaysproperty of theTrigger class is an array of integers with delays in
triggering data collection for each slave. The array length is 14, the maxmmber of slaves.
Array element O corresponds to the first slave device and element 13 ttatiten the HDMI
cable chain. The delay is calibrated against the analog signal input fsomgla source, fed to
the ADC inputs using cables of equal length. Delay values must WwedreD and the value of
the InputsDelay property of the master.

GeneratorFrequency

The GeneratorFrequencyproperty of theTrigger class sets the frequency of the internal
oscillator in hertz. The internal oscillator can serve as a trigger signal doutweth triggering
data acquisition and for any of the trigger outputs.

ConectToGenerator

The ConnectToGeneratoproperty of theTrigger class enables or disables the use of an
internal generator to trigger data collection. To start collecting dadenfthe generator, you must
also enable waiting for the trigger event (thiéaitTriggerproperty of theCaptureclass).

InputsDelay

ThelnputsDelayproperty of theTriggerclass sets the delay in starting data acquisition in
relation to the trigger signal in ADC sampling clock cycles. The triggercsignrame from one
or more trigger inputs or from an internal oscillator.

InputsGuard

ThelnputsGuardproperty of theTrigeer class sets the noise protection interval at the trigger
inputs in ADC sampling clock cycles. The trigger event is latchée oising edge of the trigger
signal for positive signal polarity, or on the falling edge for negativeripol®ulse noise at the

trigger input can cause multiple edges to be detected. Although the atiquisvill start on the
first edge, the remaining edges can lead to incorrect trigger event counts dade number of
trigger events to be missed.

EnabledinputsMask

TheEnabledIinputsMaslproperty of theTriggerclass specifies the trigger inputs allowed to
start data collection. Each bit éfnabledinputsMaskcorresponds to one trigger input, bit O to
input # 1, bit 1 to input # 2, and so on. If the bit value ihé&ntthe signal from the trigger input
starts data collection, if O - then no. If multiple inputs are allowed tariggered, then data
collection will be triggered by a signal from any of these inputs.rilimeber of the input, on the
signal from which the data collection was started, is memorized byd#wce and transmitted
to the PC in the ADC data frame. To start collecting datadrtrgger input, you must also enable
waiting for a trigger event (thévaitTriggerproperty of theCaptureclass).

InvertedinputsMask

The InvertedinputsMask property of the Trigger class specifies the trigger inputs with
negative polarity of the input signal. Each bitiofertedinputsMaskcorresponds to one trigger
input, bit O - input # 1, bit 1 - input # 2, etc. If the biluais 1, then the trigger input has a
negative polarity of the input signal, if O - then positive.

AutoUpdate

TheAutoUpdate property of theTriggerclass enables or disables automatic transmission of
settings to the device when the properties of theggerclass are changed. If the property value
is true, then when writing a new value to any of the propertyhw Triggerclass, the updated
settings are automatically transferred to the device. If the property vatelse, then you can
assign new values to several properties of Thgygerclass, and then call theonfiguremethod,
which will transfer the settings to the device and restore theéoUpdae property to true.

TriggerOutput class

Table 3TriggerOutput class properties and methods

Name Type Description
i Takes settings from class properties to a syst
Configure method
bus
_ The duration of the trigger release
PulseWidth Double .
microseconds
Delay Double Signal delay at trigger output in microseconds
SourcesMask Unsigned, 32 bi Trigger input mask connected to trigger exit

Sign of an internal generator connecting to t
trigger exit

ConnectToGenerator Boolean

Enable Boolean Signal resolution sign at trigger input
Sign of negative polarity of the signal at the exi

InvertinputsDelay Boolean ,
the trigger
A sign of automatic transfer of settings to ti
AutoUpdate Boolean) _
device when the class properties change
Configure

TheConfiguremethod of theTriggerOutputclass transfers the settings calculated from the
properties of theTriggerOutput class to the device via the system bus, and also sets the
AutoUpdate property to true.

PulseWidth

The PulseWidth property of the TriggerOutputclass sets the pulse width at the trigger
output in microseconds. The pulse duration should not exceed the pulsetiepgieriod at the
trigger output.

Delay

The Delay property of theTriggerOutputclass sets the delay of the signal at the trigger
output in relation to the signal at the connected trigger inputt@ithe signal from the internal
generator in microseconds.

SourcesMask

The SourcesMaslproperty of theTriggerOutputclass determines which trigger inputs are
connected to the trigger's output. Each bit of tBeurcesMaslcorresponds to one trigger input,
bit O to input # 1, bit 1 to input # 2, and so on. If the bit valu&,ishen the trigger input is
connected to the trigger output, otherwise it is not connected. If severalt&pte connected to
the output, then the output signal is a logical OR function of signalstiertrigger inputs

ConnectToGenerator

The ConnectToGeneratoproperty of the TriggerOutput class connects or disables the
internal generator to the trigger output. The internal oscillator can benected in conjunction
with one or more trigger inputs. In this case, the signal at the trigg#put is a logical OR
function of signals from the trigger inputs.

Enable

TheEnableproperty of theTriggerOutputclass enables or disables the pulse signal at the
trigger output.

Invert

Thelnvert property of theTriggerOutputclass determines the polarity of the signal at the
trigger output. If it isrue, then the signal polarity is negativefafse t positive.

AutoUpdate

The\utoUpdate property of theTriggerOutputclass enables or disables automatic
transmission of settings to the device when the properties offthggerclass are changed. If the
property value isrue, then when writing a new value to any of the property of theggerclass,
the updated settings are automatically transferred to the device. df ghoperty value isalse,
then you can assign new values to several properties ofTtheger class, and then call the
Configure method, which will transfer the settings to the device eatore theAutoUpdae
property to true.

Datalogger class

Table 4: DatalLogger class properties and methods

Name
Configure

StartLoggingToFile
StartLoggingToMemory
StopLogging

GetFrame
OnStartLogging
OnStopLogging
LimitNumFrames
LimitLoggingTime
LimitFileSize
DataFolder

DevicesMask

MaxLoggedFramesinputsDele

MaxFileSize

LoggingTimeout

Logging

Progress

NumLoggedFrames

LoggingTime
FileSize

AutoUpdate

Configure

The Configure method for the DatalLoggerclass does nothing and is reserved for future

reference.

Type
method

method
method
method
method
event
event
Boolean
Boolean
Boolean
String
Unsigned,
32 bit
Integer,
32 bit
Integer,
32 bit
Integer,
32 bit
Boolean
Integer,
32 bit
Integer,
32 bit
Double
Double

Boolean

Description
Calls for OnPropertyChanged device mane
DeviceManager
Starts recording data in a file
Launches memory record
Stops recording data
Extracts ADC data frame from memory queu
Event is called when you start recording datz
Event is triggered when data records stop
Sign of limiting the number of frames recorde
Sign of time limit
Sign of limiting the size of the data file
Full way to the data file folder
A mask of devices whose data is recordec
memory or file
Maximum number of recorded data frames

Maximum data file size in megabytes

Maximum time to write in a file or memory i
seconds

Sign of active data recording

Percentage data record progress

Current number of recorded data frames

Current memory or file time

Current data file size in megabytes

A sign of automatic transfer of settings to tt
device when the class properties change

StartLoggingToFile

TheStartLoggingToFi(EileNamg method of theDatalLoggerclass starts writing ADC data
to a file. The=ileNameargument of typestring passes the name of the file without the extension
and without the file path. The method returnisie if recording started without errors.

StartLoggingToMemory

The StartLoggingToMemory(LossyQueumethod of theDatal.oggerclass starts writing
ADC data to a queue in memoryLAssyQueu®f type Boolean indicates to create a lossy queue,
otherwise a lossless queue will be created. The queue length isisdeetien you instantiate
the Dataloggerclass in theCreateLoggemethod of theDeviceManager The method returns
true if recording started without errors.

StopLogging

TheStopLoggirmethod of theDatal.oggeiclass stops writing ADC data to a file or memory.
Since it takes some time to complete writing to the file, gbiould wait until the end of writing
by checking thé.oggingflag of theDatal oggerclass or wait for thé&©nStopLoggingvent of the
Dataloggerclass.

GetFrame

The GetFrame(FrameBuffer TransposeFrame FrameChannels FrameSamples
FrameNumber TriggerTime TriggerSourceSampleRatemethod of theDataloggerclass waits
for one ADC data frame, fetches it from the queue in memory, and copiesthie provided
FrameBuffer TheTransposeFramargument must berue if the two-dimensional data array is
to have row feeds (first index) and column-wise channels, and mudtlbe if the two-
dimensional data array must have row feeds and column feeds. The rds @rguments are
links for receiving the parameters of the data franteameChannels the number of ADC
channels in the framé;rameSamples the number of ADC samples in the frarRegsmeNumber
- the sequence number of the framériggerTime- the countdown of the trigger event for this
frame in millisecondsSampleRatet the sampling rate of the frame data in hertz. The method
returnstrue if the data was retrieved from the queue successfully @k if the data timed out
the frame.

OnStartLogging

TheOnStartLoggingvent of theDatal.oggeiclass is called immediately after the successful
start of writing data to a file or memory. The event handler mustenstandard arguments of
type object andEventArgs

OnStopLogging

The OnStopLoggingevent of the DataLoggerclass is called upon automatic or forced
completion of writing data to a file or memory. The event handler muselsaandard arguments
of type object andEventArgs

LimitNumFrames

The LimitNumFramesproperty of the DataLoggerclass enables or disables automatic
stopping of data writing to a file or memory if the number of ADC datiaés written is equal to
the maximum value set by thidaxL.oggedFrameproperty of theDatal.oggerclass.

LimitLoggingTime

The LimitLoggingTimeproperty of the DataLoggerclass enables or disables automatic
stopping of data logging to a file or memory if the logging time exceeds the maxiralue set
by thelLoggingTimeout property of theDatal.oggerclass.

LimitFileSize

TheLimitFileSizeproperty of theDataloggerclass enables or disables automatic stopping of
writing data to a file or memory if the file size has exceeded the maximune \&#uby the
MaxFileSizeproperty of theDatalL.oggerclass.

DataFolder

TheDataFolderproperty of theDatal.oggeiclass specifies the full path to the folder where
the logged data files are stored.

DevicesMask

TheDevicesMaskproperty of theDatal.oggerclass defines the devices from which data is
written to a file or memory. Each DevicesMask bit corresponds to omeelebit O t0 a device
with Id = 0, bit 1 - to a device witll = 1, etc. If the bit value is 1, then data from the device is
written, otherwise it is not.

MaxLoggedFrames

TheMaxLoggedFrameproperty of theDatal.oggeiclass specifies the maximum number of
ADC data frames to write. To stop recording when the maximum numbercofded frames is
exceeded, you must also set thenitNumFramegroperty of theDatalLoggeiclass tdrue.

MaxFileSize

TheMaxFileSizeproperty of theDatal.oggerclass specifies the maximum size of a data file
in megabytes. To stop recording when the maximum file size is exceeded, yoalswsét the
LimitFileSizgoroperty of theDatal.oggerclass tarue.

LoggingTimeout

The LoggingTimeoutproperty of the DataLoggerclass specifies the maximum time for
writing data to a file or memory in seconds. To stop recording when theémuan recording time
is exceeded, you must also set thienitLogging Timegoroperty of theDatalLoggerclass tdrue.

Logging

ThelLoggingproperty of theDatal.oggeclass indicates the state of the data log and is a read-
only property. If the property value isue, then the recording is made,fiflse t then no.

Progress

TheProgresgproperty of theDatal.oggeiclass shows the current progress of writing data as
a percentage and is a read-only property. The recording progress isatadtaither to end the
recording by exceeding the number of frames, or by exceeding thasifiée In this case, the
progress value is displayed for the condition that will be fulfillediearStopping recording at
least one of the conditions must be allowed by thenitFileSizeor LimitNumFramegroperties
of the DatalL.oggerclass.

NumLoggedFrames

TheNumLoggedFrameproperty of theDataloggerclass shows the current number of ADC
data frames written to file or memory and is a read-only property.

LoggingTime

ThelLoggingTimeproperty of theDatal.oggerclass shows the current time in seconds since

the start of writing data to a file or memory and is a read-onlyperty.

FileSize

The FileSizeproperty of the DatalLoggerclass shows the current size of the data file in
megabytes and is a read-only property.

AutoUpdate

The AutoUpdate property of theDatal.oggerclass enables or disables notification through
the Device Manage©nPropertyChangeevent when the properties of th®atal.oggerclass
change. Before starting to batch change the properties ofth&al oggerclass, this property can
be set tofalse, and when finishedyue. In this case, th&nPropertyChangeevent will be called
only one.

AFB818 Jass

Table 5: Properties and Methods of AFE5818 class

Name Type Description
Takes settings from class properties to a syst
bus
ConfiguredDevicesMas| Unsigned, 32 bil Device mask for configuration
ConfiguredAdcMask Unsigned, 32 bil Mask of ADC chips for configuration

If true, then the settings for VCA #2 are tak

Configure method

VcalEqualsVca2 Boolean .
from the Vcal property, if false, then from Vc:
Class References to class AFE5818Vca with setting
Vcal, Vca2
AFE5818Vca VCA #1 and for VG
Sign of automatic transmission of settings to t
AutoUpdate Boolean . .
device when class properties change
Configure

The Configure method of the AFES818 class transfers the settings calculated from the
properties of theAFE581&lass to the device via the system bus, and also setéthgUpdate
property totrue.

ConfiguredDevicesMask

The ConfiguredDevicesMaslproperty of the AFE5818class sets the device mask for
configuration. Each bit of the mask corresponds to one device: bib @ -device with Id = 0, bit
1 - to a device with Id = 1, etc., where Id is an identifier of a devicthersystem bus. When
changing the mask, the settings are not automatically transferred ¢odévice, but the new
mask is taken into account when changing other properties. So, if any pyapeassigned the
same value, then if the mask has not been changed, then the settingowikertransferred to
the device, and if they were changed, they will be. The number of @iedelevices can be read
from the DevicesCounproperty of the device manager.

ConfiguredAdcMask

TheConfiguredAdcMaslproperty of theAFES81&lass sets the mask of the ADC chips for
configuration. Each bit of the mask corresponds to one chip: bit O -#&ipit 1 - chip #2, etc.
When changing the mask, the settings are not automatically traredeto the device, but the
new mask is taken into account when changing other propertiesf 8oy property is assigned
the same value, then if the mask has not been changed, then thagstill not be transferred
to the device, and if it was changed, then they will be transfetcethe device.

VcalEqualsVca2

TheVcalEqualsVcagroperty of theAFES81&lass determines whether the settings for VCA
#1 and VCA #2 are the same. If the property valirelés then the settings for VCA #2 are taken
from the VVcalproperty of theAFES81&lass, ifalse, then fromVca2

AutoUpdate

TheAutoUpdate property of theAFES81&lass enables or disables automatic transmission
of settings to the device when the properties of thE E581&lass are changed. If the property
value istrue, then when writing a new value to any of the properties & thFE581&lass, the
updated settings are automatically transferred to the device. If tr@pprty value ialse, then
you can assign new values to several properties ofthe581&lass, and then call the Configure
method, which will transfer the settings to the device and restore AhgoUpdate property to
true.

Vcal, Vca?2

TheVcalandVcaZ2properties of theAFES81&lass are references to theFE5818Vca
class. This class is described below. Changing the properties ogfREe818Vcalass will
automatically call the Configure method of tAé E581&lass if theAutoUpdate property of the
AFE581&lass isrue.

Table 6: Properties and MethodsAff5818Vca class

Name Type Description
. If true, the cutoff frequency of the LNA block's high-p
HpfCutoffDivided Boolean = | .
filter is reduced by three times.
LowNoiseMode Boolean @ Flag of VCA Low Noise Mode Enabled
PgaHpfDisabled Boolean Flag of PGA block high pass filter disabled
LnaHpfDisabled Boolean @ Flag of LNA High Pass Filter Disabled
PgaClampEnabled Boolean Flag of PGA voltage limiter enabled
F5MHzLpfEnabled Boolean @ Flag of Low pass filter Enabled

TgcAttEnabled Boolean Flag of Connecting the attenuator in the TGC block

PowerMode Enum VCA power consumption mode
HpfCutoffFreq Enum High Pass Filter Cutoff Frequency
LpfCutoffFreq Enum Low Pass Filter Cutoff Frequency

TgcAttenuation Enum Attenuator gain in TGC unit
LnaGlobalGain Enum LNA block gain
PgaGain Enum PGA block gain

HpfCutoffDivided

TheHpfCutoffDividedproperty of theAFE5818c class enablesr(ie) or disablesfélse) the
LNA block's high-pass filter cutoff frequency to be reduced threefold.

LowNoiseMode

TheLowNoiseModeproperty of theAFE5S818c class enabledr(ie) or disablesfélse) the
VCA low noise mode for high impedance sensors.

PgaHpfDisabled

ThePgaHpfDisablegroperty of theAFE5818c class enabledd|se) or disablest(ue) the
high-pass filter of the PGA.

LnaHpfDisabled

ThelLnaHpfDisablecproperty of theAFE5818c class enableddse) or disablest(ue) the
high pass filter of the LNA block.

PgaClampEnabled

ThePgaClampEnableproperty of theAFE5818cclass enablesr(ie) or disablesfélse) the
voltage limiter in the PGA.

F5MHzLpfEnabled

TheF5MHzLpfEnableproperty of theAFE5818c class enabledr(ie) or disablesfélse) a
first-order low-pass filter with a 5 MHz bandwidth.

TgcAttEnabled

The TgcAttEnabledproperty of theAFE5S818c class enablesr(ie) or disablesfélse) the
attenuator in the TGC block.

PowerMode

The PowerMode property of the AFE5818Vc&lass determines the power consumption
mode of the VCA unit, is an enumerable property and can be assigresslvaluesiowNoiseg
LowPower MediumPower.

HpfCutoffFreq

TheHpfCutoffFregproperty of theAFES818Vcelass defines the cutoff frequency of the high
pass filter, is an enumerable property and can be assigned the followingsvaltiO kHz
_100_kHz_150_kHz 200 _kHz

LpfCutoffFreq

ThelpfCutoffFrecproperty of theAFES5818Vcelass defines the cutoff frequency of the low-
pass filter, is an enumerable property and can be assigned the followingsvall0 MHz
15 MHz_20 MHz 30 MHz 35 MHz 50 MHz

TgcAttenuation

TheTgcAttenuationproperty of theAFE5818Vcelass sets the gain of the attenuator in the
TGC block, is an enumerable property and can be assigned the following valu&s: 6 dB,
~12.dB, _18dB _24 dB _30dB, 36 dB.

LnaGlobalGain

ThelLnaGlobalGairproperty of theAFE5818Vcelass defines the gain of the LNA block, is
an enumerable property and can be assigned the following valuesdB, 18 dB, 24 dB.

PgaGain

The PgaGainproperty of the AFE5818Vcalass defines the gain of the PGA block, is an
enumerable property and can be assigned the following valug$:dB, 30 dB.

Class AFB32

Table 7: AFE5832 Class Properties and Methods

Name Type Description
i Transfers settings from class properties to
Configure method _ _
device via the system bus
ConfiguredDevicesMas| Unsigned, 32 bil Device mask for configuration
ConfiguredAdcMask Unsigned, 32 bit Mask of ADC chips for configuration
Sign of connecting the high-pass filter of t
EnableAttenuatorHpf = Boolean
attenuator
AttenuatorHpfCorner Enum Attenuator high pass filter slope
If true, then the settings for Even die are tak
from the Odd property, if false, then from Eve
Class References to the AFE5832Die class with sett

AFE5832Die for Odd die and for Even die

OddEqualEven Boolean

Odd, Even

Sign of automatic transmission of settings to t

AutoUpdate Boolean _ _
device when class properties change

Configure

The Configure method of the AFES832 class transfers the settings calculated from the
properties of theAFE583Zlass to the device via the system bus, and also setéhgUpdate
property totrue.

ConfiguredDevicesMask

The ConfiguredDevicesMaslproperty of the AFE5832class sets the device mask for
configuration. Each bit of the mask corresponds to one device: bib @ -device with Id = 0, bit
1 - to a device with Id = 1, etc., where Id is an identifier of a devicthersystem bus. When
changing the mask, the settings are not automatically transferred éodévice, but the new
mask is taken into account when changing other properties. So if apeqyois assigned the
same value, then if the mask has not been changed, then the settingowiikertransferred to
the device, and if they were changed, they will be. The number of cdede&levices can be read
from the DevicesCounproperty of the Device Manager.

ConfiguredAdcMask

TheConfiguredAdcMaslproperty of theAFES83Zlass sets the mask of the ADC chips for
configuration. Each bit of the mask corresponds to one chip: bithip # 1, bit 1 - chip # 2, etc.
When changing the mask, the settings are not automatically traredeto the device, but the
new mask is taken into account when changing other properties. Sy ip@perty is assigned
the same value, then if the mask has not been changed, then thegstill not be transferred
to the device, and if it was changed, they will be.

EnableAttenuatorHpf

The EnableAttenuatorHpfproperty of theAFES583ZXlass enablesr(ie) or disablesfélse)
the high-pass filter of the attenuator block.

AttenuatorHpfCorner

The AttenuatorHpfCornerproperty of theAFE583Zlass determines the slope of the high-
pass filter of the attenuator, is an enumerable property and can be asstgeddllowing values:
R, B, M, C5CqC7C8C9Cl0.

OddEqualEven

TheOddEqualEveiproperty of theAFE583Zlass determines whether the Even die and Odd
die settings are the same. If the property valuérise, then the settings for Even die are taken
from the Odd property of theAFE583Zlass, ifalse, then fromEven

AutoUpdate

TheAutoUpdate property of theAFE583Zlass enables or disables automatic transmission
of settings to the device when the properties of tA¢E583%lass are changed. If the property
value istrue, then when writing a new value to any of the properties & thFE583Zlass, the

updated settings are automatically transferred to the device. If trapprty value ialse, then
you can assign new values to several properties ofthe583Zlass, and then call theonfigure
method, which will transfer the settings to the device and restore AhgoUpdate property to
true.

Odd, Even

TheOdd andEvenproperties of theAFES83Zlass are references to thie-E5832Dielass.
This class is described below. When changing the properties ofAle5832Dieclass, the
Configuremethod of theAFE583Zlass will be automatically called if theitoUpdate property
of the AFE583Zlass isrue.

Table 8: AFE5832Die Class Properties and Methods

Name Type Description
LpfCutoffFreq Enum LNA low pass filter cutoff frequency
HpfCutoffFreq Enum LNA High Pass Filter Cutoff Frequency
DtgcGain Double Digital TGC gain, dB
EnableLnaHpf Boolean Sign of connecting the high-pass filter of the LNA un

Flag of VCA unit low power consumption ma
LowPowerMode Boolean o
activation

EnableDtgcAttenuator Boolean @ Flag of connecting the attenuator in the digital TGC bl

LpfCutoffFreq

Thel pfCutoffFrecproperty of theAFE5832Dielass defines the cutoff frequency of the LNA
block low pass filter, is an enumerable property and can be assigreedottowing values:
10 MHz 15 MHz 20 MHz 30 MHz If the low power mode is enabled (the
LowPowerModeproperty of theAFES832Dielass igrue), then the frequency values must be
divided by two.

HpfCutoffFreq

TheHpfCutoffFregproperty of theAFES832Dielass defines the cutoff frequency of the LNA
block high pass filter, is an enumerable property and can be assitpeetbllowing values:
75 kHz_150 kH

DtgcGain
TheDtgcGainproperty of theAFES832Dielass defines the digital TGC gain in decibels.

EnableLnaHpf

The EnableLnaHpproperty of theAFE5832Dielass enablesr(e) or disablesfélse) the
high-pass filter in the LNA block.

LowPowerMode

ThelLowPowerModeproperty of theAFE5832Dielass enabledr(ie) or disablesfélse) the
low power mode of the VCA

EnableDtgcAttenuator

The EnableDtgcAttenuatorproperty of the AFE5832Die class enablesir(ie) or disables
(false) the attenuator in the digital TGC block.

Class AFHB32.P

Table 9AFEB832LPClass Properties and Methods

» & A * Yox - &
) Transfers settings from class properties to
Configure ° /(. .
device via the system bus
ConfiguredDevicesMas| Unsigned, 32 bii Device mask for configuration

ConfiguredAdcMask Unsigned, 32 bii Mask of ADC chips for configuration

HpfCornerFreq Enum Attenuator high pass filter slope
LpfCutoffFreqs Enum Low pass filter cutoff frequency
PgaGainOddEqualEver Enum PGA gain
LnaGainOdd, Even Enum LNA gain
LowPowerMode Boolean Flag of low power consumption mode

Flag of the mode with low signal delay a
LowLatencyEnable Boolean . . .

disabled digital postprocessing

Digitally controlled attenuator attenuation rang
Attenuator Double

0to 36 dB

Flag for automatic transmission of settings to t
AutoUpdate Boolean i)

device when class properties are changed

Configure

The Configure method of the AFES83PP class transfers the settings calculated from the
properties of theAFE583PPclass to the device via the system bus, and also setsuhe)pdate
property totrue.

ConfiguredDevicesMask

The ConfiguredDevicesMaslproperty of the AFES83PP class sets the device mask for
configuration. Each bit of the mask corresponds to one device: bib @ -device with Id = 0, bit
1 - to a device with Id = 1, etc., where Id is an identifier of a devicthersystem bus. When
changing the mask, the settings are not automatically transferred ¢éodévice, but the new
mask is taken into account when changing other properties. So if apegyois assigned the
same value, then if the mask has not been changed, then the settingoowikertransferred to

the device, and if they were changed, they will be. The number of ciede&levices can be read
from the DevicesCounproperty of the Device Manager.

ConfiguredAdcMask

TheConfiguredAdcMaslproperty of theAFE583PPclass sets the mask of the ADC chips for
configuration. Each bit of the mask corresponds to one chip: bittdp # 1, bit 1 - chip # 2, etc.
When changing the mask, the settings are not automatically traredetw the device, but the
new mask is taken into account when changing other propertiesf 8oy property is assigned
the same value, then if the mask has not been changed, then thegetwill not be transferred
to the device, and if it was changed, they will be.

HpfCornerFreq

TheHpfCornerFrecproperty of theAFEBE832.P class determines the steepness of the high
pass filter, is an enumerated property, and can be assigned vali€§: kHz, 110 kHz,
120 kHz, 130 kHz, 140 kHz, 150 kHz, 160 kHz, 170 kHz, 20 kHz, 30 kHz, 40 ki
50 kHz, 60 kHz, 70 kHz, 80 kHz, 90 kHz, 270 kHz, 280 kH, 290 kHz, 300 Kkt
310 kHz, 180 kHz, 190 kHz, 200 _kHz, 210 kHz, 220 kHz, 230 kHz, 240 kHz.

LpfCutoffFreq

ThelLpfCutoffFregproperty of theAFE832L P class determines the cutoff frequency of the
low-pass filter of the block, is an enumerated property and can be assigalads: 10 MHz
15 MHz 20 MHz 25 MHz If low power mode is enabled (theowPowerModeproperty
of the AFES832L P class igrue), then the 25 MHz value will correspond to a frequency of 20
MHz, and the remaining values will correspond to the frequenciesfigubal them.

PgaGain

The PgaGainproperty of theAFES83PP class determines the gain of the PGA block, is an
enumerated property, and can be assigned values: dB, 24 dB, 27 dB.

LmGain

The LnaGainproperty of theAFE583PP class determines the gain of the LNA block, is an
enumerated property, and can be assigned valués: dB, 18 dB, 21 dB.

LowPowerMode

ThelLowPowerModeproperty of theAFEB832LPclass enabledr(ie) or disablesfflse) the
low power mode.

LowLatencyEnable

ThelLowLatencyEnablproperty of theAFEB832L Pclass enablesr(ie) or disablesfélse) the
low latency mode with digital processing disabled.

Attenuator

The Attenuator property of theAFEB832LP class sets the attenuation factor of the digital
attenuator in decibels in the range from 0 to 36 in 0.125 dB steps.

AutoUpdate

TheAutoUpdateproperty of theAFEB832L Pclass enables or disables automatic transmission
of settings to the device when the properties of Atir 58321 Pclass are changed. If the property
value isrue, then when writing a new value to any of the properties of &f€5832_Pclass, the
updated settings are automatically transferred to the device. If thepprty value igalse, then
you can assign new values to several properties of AR€832LP class, and then call the
Configuremethod, which will transfer the settings to the device and restiie AutoUpdate
property totrue.

Data file format
ADC data is saved in a binary RAW file. The file consists of eafiler{

Tablel0) and N ADC data frames. The number of data frames is written in the filiehdzach
frame also contains a header and data (Tddle Each frame corresponds to one device, the
frames are written to the file strictly sequentially from the devid#wa lower serial number to
the device with a higher serial number. The serial number of the deuvitsgasmined by its
position in the chain of devices connected by HDMI cable. The master has sequemtwer O
and the last sequence number has the last connected device. To deterrhicle device a
particular frame belongs to, analyze the Boards Mask field in the filegnead

The data in each frame is arranged sequentially - first the 1st sampleanhel # 1, then the
1st sample of channel # 2 and so on until the last channel, then thes@mple of channel # 1,
then the 2nd sample of channel # 2 and so on until the laanohl. Then the sequence is
repeated until the last count of the last channel. The file lexacbntains the total number of
channels recorded in the file, and the same number of data samplesl@rchAannel for all data
frames. The frame header indicates the number of channels for thesponding device. The
number of channels is determined by the number of allowed ADCs amiiiéer of channels
per ADC. In order to determine which channel belongs to which p@Cshould analyze the
mask of allowed ADC&DC Mask for the current frame. Channels are always arranged in
ascending order by ADC numbers.

Tablel0 Data file header format

Field
Format version

Number of frames

Header length
Frame length
Sample rate

Number of channels

Number of samples

Number of boards

Boards mask

Type
Double
Integer, 32 bit
Integer, 32 bit
Integer, 32 bit
Integer, 32 bit
Integer, 32 bit

Integer, 32 bit

Integer,32 bit

Unsigned,
32 bit

Tablell Data Frame Format

Field

Number of channels
Number of samples

Sample rate

Trigger source

Trigger time

Frame number

ADC Mask

ADC data

Type
Integer, 32 bit
Integer, 32 bit
Integer, 32 bit

Integer, 32 bit

Double

Unsigned,
32 bit

Unsigned,
32 bit

Integer Array,
16 bit

Description
File version
File format version
File header size in bytes
Data frame size in bytes
The frequency of data sampling in Hertz
Number of ADC channels in the file
Number of data counts on the ADC channel in e
frame
The number of devices, data from which &
recorded in the file
The device mask is in order from the master (bit
to the last slave (bit #31). If data from the devi
with the sequence number N, starting from tt
master device with the number 0, are written to tt
file, then the N bit is 1, otherwise O

Description
Number of ADC channels in a frame
Number of samples per channel
Data sampling rate ikiz
Frame data trigger input mask. Bit O of the me
corresponds to input #1, bit 1 of the masko input
#2, and so on.
Timing of the frame data trigger signal
milliseconds
Numeric frame label

Mask of allowed ADC chips. Each bit of the m
corresponds to one ADC chip, bit O to chip #1, k
to chip #2, and so on. If the bit value is 1, then -
ADC is allowed to collect data, otherwise it
prohibited.

ADC data array, data are arranged sequentially
channels: first, all channels for counting #1, then
channels for counting #2, etc.

