
PhotoSound SDK 1.1.2 User Manual

Contents
Introduction ... 5

Working with the PhotoSoundClassesClassLibrary.dll ... 7

Getting started in MATLAB ... 7

Getting Started in Visual Studio C# ... 13

Controlling Data Acquisition in MATLAB ... 16

Controlling Data Acquisition in LabVIEW ... 19

Controlling Data Acquisition in Visual Studio C# .. 22

Recording data to a File in MATLAB .. 26

Recording Data to a File in Visual Studio C# .. 30

ADC AFE5818 setup in MATLAB .. 34

ADC AFE5818 setup in LabVIEW .. 37

ADC AFE5818 setup in Visual Studio C# ... 38

ADC AFE5832 setup in Matlab .. 41

ADC AFE5832 setup in LabVIEW .. 45

ADC AFE5832 setup in Visual Studio C# ... 46

Real-time data processing in MATLAB ... 47

Real-time data processing in LabVIEW .. 50

Real-time data processing in Visual C# .. 52

PhotoSoundClasses.dll Class Library Reference ... 54

Capture class .. 54

Configure .. 54

SamplesToCapture .. 54

FramesPerPacket .. 54

DecimationFactor ... 55

WaitTrigger ... 55

EnabledAdcMask .. 55

AutoUpdate .. 55

Trigger class .. 56

Configure .. 56

GetInputFrequencies .. 57

TriggerOutputs.. 57

InputNames .. 57

SlaveDelays ... 57

GeneratorFrequency ... 57

ConnectToGenerator .. 57

InputsDelay ... 57

InputsGuard .. 57

EnabledInputsMask .. 58

InvertedInputsMask .. 58

AutoUpdate .. 58

TriggerOutput class ... 58

Configure .. 59

PulseWidth ... 59

Delay .. 59

SourcesMask ... 59

ConnectToGenerator .. 59

Enable ... 59

Invert .. 60

AutoUpdate .. 60

DataLogger class ... 61

Configure .. 61

StartLoggingToFile .. 62

StartLoggingToMemory .. 62

StopLogging .. 62

GetFrame .. 62

OnStartLogging ... 62

OnStopLogging .. 63

LimitNumFrames .. 63

LimitLoggingTime .. 63

LimitFileSize .. 63

DataFolder .. 63

DevicesMask ... 63

MaxLoggedFrames .. 63

MaxFileSize ... 63

LoggingTimeout .. 64

Logging ... 64

Progress .. 64

NumLoggedFrames ... 64

LoggingTime.. 64

FileSize .. 64

AutoUpdate .. 64

Class AFE5818 ... 65

Configure .. 65

ConfiguredDevicesMask .. 65

ConfiguredAdcMask .. 65

Vca1EqualsVca2 .. 66

AutoUpdate .. 66

Vca1, Vca2 .. 66

HpfCutoffDivided .. 67

LowNoiseMode ... 67

PgaHpfDisabled... 67

LnaHpfDisabled ... 67

PgaClampEnabled ... 67

F5MHzLpfEnabled ... 67

TgcAttEnabled... 67

PowerMode .. 67

HpfCutoffFreq ... 67

LpfCutoffFreq .. 68

TgcAttenuation ... 68

LnaGlobalGain .. 68

PgaGain .. 68

Class AFE5832 ... 68

Configure .. 69

ConfiguredDevicesMask .. 69

ConfiguredAdcMask .. 69

EnableAttenuatorHpf .. 69

AttenuatorHpfCorner .. 69

OddEqualEven .. 69

AutoUpdate .. 69

Odd, Even ... 70

LpfCutoffFreq .. 70

HpfCutoffFreq ... 70

DtgcGain ... 70

EnableLnaHpf .. 70

LowPowerMode.. 71

EnableDtgcAttenuator .. 71

Class AFE5832LP ... 71

Configure .. 71

ConfiguredDevicesMask .. 71

ConfiguredAdcMask .. 72

HpfCornerFreq .. 72

LpfCutoffFreq .. 72

PgaGain .. 72

LnaGain ... 72

LowPowerMode.. 72

LowLatencyEnable .. 72

Attenuator .. 73

AutoUpdate .. 73

Data file format .. 73

Introduction

 The Software Development Kit (SDK) is intended for developing applications for PhotoSound

devices in MATLAB, LabVIEW, and Visual Studio C# environments. The package consists of several

software layers, an example of which for Legion ADC256 is shown

in Figure 1. The first level is the system level and it includes

drivers that provide data exchange with devices via the system

bus. The second level is intermediate and it consists of 32 or 64-

bit libraries (LIB or DLL) that implement the interface for

interaction between drivers and top-level software. Components

of the first level and, in some cases, the second level are copied

to the user's PC during the installation of drivers and are stored

separately from other SDK components in the Windows folder.

The third level is functional, it is 32 or 64-bit DLLs that ensure the

operation of devices – loading firmware, initializing the

hardware, implementing the protocol for transferring control

commands and data. The fourth level is a library one, this is a

.NET assembly, which also has a DLL extension, which contains

classes for collecting and saving data, configuring devices, storing

configuration settings, saving settings in INI files and reading

settings from INI files. .NET assembly of this level can already be

used in MATLAB, LabVIEW and Visual Studio C# software

environments. The fifth level is applied, it is also represented by

a .NET assembly with a DLL extension, which contains graphical

controls through which the end user of the application works

with devices. These graphics can be placed on a Windows Forms C# application or LabVIEW front

panel through a .NET container. The sixth level is custom, it is a standalone application with an

EXE extension, which is also a .NET assembly. With this application, the user can not only perform

basic operations with the device, but also use it as a dialog box in a more complex application

written in any of the above software environments.

The SDK has two sets of files in the sdk\x86 and sdk\x64 folders. The sets differ in the number

of machine code of dynamic libraries of the 3rd level. To build applications, only one of the sets

is used: x86 - for 32-bit applications and x64 - for 64-bit applications. The components for creating

custom applications are located in the PhotoSoundSDK sub-folder. The list and description of files

in this subfolder is presented in the table below.

PhotoSoundDAQ.exe

PhotoSoundControls.dll

PhotoSoundClasses.dll

PhotoSoundDevice.dll

CyAPI.lib

cyusb3.sys

1
2

3
4

5
6

Figure 1 SDK Software Levels

File name/folder Description

PhotoSoundClasses.dll Main .NET assembly with a class library for working

with dеvices

PhotoSoundControls.dll .NET assembly with graphical controls

PhotoSoundDAQ.exe . NET build with app to perform basic operations

with devices

PhotoSoundDAQ.exe.config Configuration file for PhotoSoundDAQ.exe

PhotoSoundLibs Folder with 3rd level software components,

firmware and INI configuration files with settings

PhotoSoundLibs\Device\PhotoSoundDevice.dll Functional dynamic library for working with ADC

devices

PhotoSoundLibs\Device\PhotoSoundDevice.img Cypress FX3 USB 3.0 Controller Firmware File

PhotoSoundLibs\Device\AFE5832.ini Configuration file with the values of the Texas

Instruments AFE5832 ADC registers loaded when

the software is started for the first time

PhotoSoundLibs\Device\AFE5818.ini Configuration file with the values of the Texas

Instruments AFE5818 ADC registers loaded when

the software is started for the first time

PhotoSoundLibs\Device\adc*.bin FPGA firmware file. The full file name is

determined by the device type and revision of its

printed circuit board. To read firmware file name

for specific ADC board run

SetRevision2.1\GetFirmwareName.exe

Config Config Folder with configuration INI files

Config\Default.ini Configuration file with default device settings. If

the file does not exist, then it is created

automatically when the software is started for the

first time.

Config*.ini Alternative configuration files with device settings

Data Default folder to save data captured from ADC

Maps Folder for storing files with sensor maps. The map

is a column with sensor numbers in order from the

first channel of the first ADC to the last channel of

the last ADC on the board.

Maps*.map Sensor map files. For each type of device there is a

file with a sensor map.

In addition to the PhotoSoundSDK software components, the SDK includes:

• doc folder - contains this user manual and Excel files - calculators of configuration INI files for

ADC: AFE5832.xlsm and AFE5818.xlsm;

• examples folder - contains code examples for MATLAB, LabVIEW and Visual Studio C#

software environments.

Working with the PhotoSoundClassesClassLibrary.dll

Getting started in MATLAB

To get started with the class library, you need to load the build using the command

NET.addAssembly(asm_path), where asm_path is the full path to PhotoSoundClasses.dll. Next,

you can get a list of classes in the library by calling disp(asm.Classes). The instances of these

classes can be used to control PhotoSound devices and collect data, but creation of instances of

DeviceManager and Settings classes is possible. Instances of other classes are created

automatically when connected to a device and accessible as properties of an instance of the

DeviceManager class, then just a device manager. So we create a device manager by command

dev = PhotoSoundClasses.DeviceManager and start connecting to the device by command

dev.Connect. Since it takes some time to connect to the device, especially when connecting for

the first time after turning on the power of the device, then you can do other tasks, and then go

to the cycle of waiting for the connection to complete. You should wait for a connection until one

of the Connected or ConnectFailure properties in the device manager equals 1.

In the process of writing program code, you often need to know the list of methods and

properties of a particular class, as well as the events that it can generate. For this, MATLAB has

methods, events и properties commands. So, if we execute methods(dev), we get

Equals, GetType, GetHashCode, and ToString methods are standard for all NET classes. A

description of the rest of the methods, properties and events can be found in the tables at the

end of the section. In addition, if you type . and press the Tab key, a list of methods and properties

will appear from which you can select the desired one.

During the process of connecting to the device and when working with it, various errors may

occur, for example, if the device's power is not turned on or the cable is not connected. The

OnError event is provided to notify the user of errors in Device Manager. By subscribing to this

event using the addlistener(dev,'OnError',@onerror) command, you can display an error

message if it occurs. The onerror handler function here takes two arguments: the first is the

source of the event (always the device manager), and the second is a reference to an instance of

the MessageEventArgs class. The MessageEventArgs class has a Message property that contains

a description of the error, and a Source property — a reference to an instance of the class that is

the source of the error. An example of such a function code is presented below:

function onerror(~,event)

 disp([char(event.Source.ToString) ' error: ' char(event.Message)]);

end

The next step after successfully connecting the ADC to the device, as a rule, is to display the

ADC data on a graph. To do this, the Device Manager has a GetPlotData method. The command

num_samples = dev.GetPlotData(buffer, buffer_length, device_id, adc_num, chan_num) will

copy the chan_num channel data samples for the adc_num ADC and device_id device to the data

buffer in the buffer memory. Arguments to this method are numbered from zero. The method

returns the number of samples num_samples copied to the buffer. It can be less than the number

of samples requested or the length of buffer_length if data collection is performed for fewer

samples. To allocate memory for the data buffer in the Matlab environment there is the

NET.createArray command. The size of the buffer can be selected based on the maximum

number of data samples that can be obtained from one ADC channel. To find out this number,

just read the value of the MaxSamplesToCapture property of the Device Manager. If

num_samples is 0, then there is no data yet. The GetPlotData method is intended only for data

visualization in order to control data collection. To process ADC data in real time or to write this

data to a file, the DataLogger class is intended.

When you finish working with the device, you should disconnect from the device. To do this,

run the dev.Disconnect command. When connected to a device, the device settings are

automatically loaded from the configuration INI file and configured. And when disabled, the

settings are automatically saved in the configuration file.

The table below shows the simple.m script code from examples\matlab\ folder, which

consists of the above commands.

Table 1: Sample MATLAB script for connecting to the device, collecting, and visualizing data on
the graph

Filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\PhotoSoundSDK\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

disp(asm.Classes);

dev = PhotoSoundClasses.DeviceManager;

methods(dev);

properties(dev);

events(dev);

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 data = NET.createArray('System.Int16',dev.MaxSamplesToCapture);

 adc = 0;

 chan = 0;

 fig = figure('Name','Plot data example');

 while isvalid(fig)

 samples = dev.GetPlotData(data,data.Length,0,adc,chan);

 if samples > 0

 tmp = int16(data);

 plot(tmp(1:samples));

 end

 pause(0.1);

 end

else

 disp('Failed to connect to device');

end

dev.Disconnect;

disp('Disconnected');

Getting Started with LabVIEW

 You can start working with a class

library in LabVIEW right away by

creating an instance of the

DeviceManager class, then just a device

manager. To do this, right-click (RMB)

on the diagram, select

Connectivity\.NET\Constructor Node in

the Functions window. Next, left-click

on the diagram and in the dialog box

that appears, make an overview using

the Browse… button and find

PhotoSoundClasses.dll. After that, a list

of Objects classes and Constructors

appears in the window from which we

select DeviceManager and

DeviceManager(String appPath) (Figure

1). Many other classes can be seen in the

list of Objects classes. The user can use

instances of these classes to control PhotoSound devices and collect data, but he can only create

instances of the DeviceManager and Settings classes. Instances of the rest of the classes are

created automatically when connected to a device and are available as properties of the device

manager. After placing the device manager constructor on the diagram, we launch the

connection to the device. To do this, add Connectivity\.NET\Invoke Node (.NET) to the diagram

using the RMB, connect the link input to the constructor and select the Connect(Boolean

autoApdate) method through the Method menu (Figure 2).

Figure 2 Calling Connect Method in LabVIEW

Figure 1 Creating a Device Manager
in LabVIEW

Since it takes some time to connect to the device, especially when connecting for the first

time after turning on the power of the device, then you can do other tasks, and then go to the

cycle of waiting for the connection to complete. You should wait for a connection until the value

of one of the Connected or ConnectFailure properties of the device manager becomes True. To

read the properties of the device manager, add Connectivity\.NET\Property Node (.NET) to the

diagram using the right mouse button, connect the link input to the constructor and through the

Property menu select a specific property, for example Connected (Figure 3):

Figure 3: Reading Device Manager Property in LabVIEW

During the process of connecting to the device and when working with it, various errors may

occur, for example, if the device's power is not turned on or the cable is not connected. The

OnError event is provided to notify the user of errors in Device Manager. If you register a handler

for this event, you can display an error message if it occurs. To do this, add the

Connectivity\.NET\Register Event Callback to the diagram using the RMB, connect the Event

input to the device manager constructor and select OnError from the Event menu (Figure 4).

Now, through RMB at the VI Ref input, select Create Callback VI. LabVIEW will create a new Vi

with the desired interface, on the diagram of which you can add the output of a dialog box with

an error message (Figure 4). The handler diagram has an Event Data input - a cluster with two

fields: sender – an event source (always a device manager), e – a reference to an instance of the

MessageEventArgs class. The MessageEventArgs class has a Message property that contains a

description of the error, and a Source property is a reference to the instance of the class that is

the source of the error.

Figure 4: Create an OnError event handler in LabVIEW

Figure 5: OnError Event Handler chart

After successfully connecting the ADC to the device, the next step is usually to display the

ADC data on a graph. To do this, the Device Manager has a GetPlotData method that copies the

data samples of the СhannelNum channel for the ADC AdcNum and the DeviceId() device to the

data buffer in the PlotBuffer memory. Arguments to this method are numbered from zero. The

buffer size can be selected based on the maximum number of data samples that can be obtained

from one ADC channel. To find out this number, just read the value of the MaxSamplesToCapture

property of the Device Manager. At the output of GetPlotData, the method returns the number

of samples copied to the buffer. It can be less than the number of samples requested or the

length of the PlotSamples buffer if data collection is done for fewer samples. If the output of

GetPlotData is 0, then there is no data yet. The GetPlotData method is intended only for data

visualization in order to control data collection. The DataLogger class is intended to process ADC

data in real time or to write this data to a file in a user-formatted format.

Figure 6: Displaying ADC data on a graph

When you finish working with the device, you should disconnect from the device. The

Disconnect method is intended for this. When connected to a device, the device settings are

automatically loaded from the configuration INI file and configured. And when disabled, the

settings are automatically saved in the configuration file.

The examples\labview\ folder contains a simple.vi example that implements the above steps.

Getting Started in Visual Studio C#

To get started with the class library, you need to add a reference to the

PhotoSoundClasses.dll library in your Visual Studio project. Next, select the target build platform

for the project – x64 or x86 and copy the files from the x64\PhotoSoundSDK\ or x86\

PhotoSoundSDK\ folder to the project's output folder. The class library contains many classes,

instances of which the user can use to control PhotoSound devices and collect data, but he

himself can only create instances of the DeviceManager and Settings classes. Instances of other

classes are created automatically when connected to a device and are available as properties of

an instance of the DeviceManager class, then just a device manager. So, we create a device

manager and start the connection to the device:

DeviceManager deviceManager = new DeviceManager();
deviceManager.Connect();

Immediately after calling the Connect method, the device manager will contain empty

references to instances of other classes, and properties with information about devices will be

incorrect, since it takes some time to connect to the device, especially when connecting for the

first time after the device is powered on. To notify the user about the end of the connection, the

OnConnect event is provided in the device manager. In the handler for this event, you can

perform actions that require information about devices or access instances of other classes in

the library. An example of such a handler that starts a timer to update the graph and allocates

memory for the data buffer is below:

deviceManager.OnConnect += OnConnectEventHandler;
private void OnConnectEventHandler(object sender, EventArgs e)
{
 PlotBuffer = new short[deviceManager.MaxSamplesToCapture];
 timer1.Start();
}

During the process of connecting to the device and when working with it, various errors may

occur, for example, if the device's power is not turned on or the cable is not connected. The

OnError event is provided to notify the user of errors in Device Manager. By subscribing to this

event, you can display an error message if it occurs. The handler function must have two

arguments: the first is a reference to the device manager, and the second is a reference to an

instance of the MessageEventArgs class. The MessageEventArgs class has a Message property

that contains a description of the error, and a Source property – a reference to an instance of the

class that is the source:

deviceManager.OnError += OnErrorEventHandler;
private void OnErrorEventHandler(object sender, MessageEventArgs e)

{
 MessageBox.Show($"{e.Source.ToString()} error: {e.Message}");
}

After successfully connecting the ADC to the device, the next step is usually to display the

ADC data on a graph. To do this, there is a method in the device manager

public int GetPlotData(ref short[] PlotBuffer, int PlotSamples,
 int DeviceId, int AdcNum, int ChannelNum);

The method returns the number of data samples copied to the PlotBuffer buffer. The

requested number of PlotSamples must be less than or equal to the size of the PlotBuffer.

DeviceId, AdcNum and ChannelNum – device identifier on the bus, ADC number and ADC

channel number, respectively. These arguments are numbered from zero. The buffer size can be

selected based on the maximum number of data samples that can be obtained from one ADC

channel. To find out this number, just read the value of the MaxSamplesToCapture property of

the Device Manager. If the return value of GetPlotData is 0, then there is no data yet. The

GetPlotData method is intended only for data visualization in order to control data collection.

The DataLogger class is intended to process ADC data in real time or to write this data to a file.

When you finish working with the device, you should disconnect from the device. The

Disconnect method of the Device Manager is intended for this. When connected to a device, the

device settings are automatically loaded from the configuration INI file and configured. And when

disabled, the settings are automatically saved in the configuration file.

The table below shows the code from the sample Simple project from the

examples\visual\SdkExamples\ folder that implements the above actions.

Table 2: An example Visual C# program for connecting to a device, collecting and visualizing
data on a graph

using PhotoSoundClasses;
using System;
using System.Windows.Forms;

namespace Simple
{
 public partial class Simple : Form
 {
 public Simple()
 {
 InitializeComponent();
 chart1.Series.Clear();
 var series = chart1.Series.Add("ADC1/CH1");
 series.ChartType =
System.Windows.Forms.DataVisualization.Charting.SeriesChartType.FastLine;
 }

 private DeviceManager deviceManager = null;
 private short[] PlotBuffer = null;

 private void Form1_Load(object sender, EventArgs e)

 {
 deviceManager = new DeviceManager();
 deviceManager.OnConnect += OnConnectEventHandler;
 deviceManager.OnError += OnErrorEventHandler;
 deviceManager.Connect();
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 int samples = deviceManager.GetPlotData(PlotBuffer, PlotBuffer.Length, 0,
0, 0);
 if (samples > 0)
 {
 chart1.Series[0].Points.Clear();
 chart1.Series[0].Points.DataBindY(new ArraySegment<short>(PlotBuffer,
0, samples));
 }
 }

 private void OnConnectEventHandler(object sender, EventArgs e)
 {
 PlotBuffer = new short[deviceManager.MaxSamplesToCapture];
 timer1.Start();
 }

 private void OnErrorEventHandler(object sender, MessageEventArgs e)
 {
 MessageBox.Show($"{e.Source.ToString()} error: {e.Message}");
 }

 private void Form1_FormClosed(object sender, FormClosedEventArgs e)
 {
 deviceManager?.Disconnect();
 }
 }
}

Controlling Data Acquisition in MATLAB

ADC data acquisition is controlled by the Capture, Trigger, and TriggerOutput classes.

Instances of these classes are not created by the user, but by the device manager after

successfully connecting to devices. Links to created instances of classes are stored in the

properties of the same name Capture, Trigger and TriggerOutput of the device manager (the

DeviceManager class). Before connecting devices, these properties contain empty links (null).

The Capture class allows you to change data acquisition settings, such as the number of data

samples per ADC channel or the flag to wait for a trigger event before starting data collection.

Settings from the properties of the Capture class are passed to all connected devices

simultaneously. The Trigger class defines the condition by which data collection begins, for

example, whether triggering from an internal generator is allowed or the number of an input that

receives an external trigger signal. Settings from the properties of the Trigger class are

transferred to only one device, which is the master. If several masters are connected to the PC,

the settings are only transferred to the first device on the system bus. The TriggerOutput class

defines the parameters for the trigger output, such as pulse width and delay. The settings from

the properties of the TriggerOutput class are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, for example dev.Capture.WaitTrigger = true. This value will be

automatically transferred to the device via the system bus, for example USB, and also saved in

memory for later writing the settings to the configuration file. This behavior is well suited for

management through a graphical user interface - the user clicks a button and the settings change

immediately. There is another method that is suitable for programmatically controlling data

collection when many parameters are changed at the same time. In order to prohibit the

automatic transfer of settings to the device, you need to assign the value false to the AutoUpdate

property of the corresponding class. Next, you can assign new values to the properties of the

class and call the Configure method of that class. The Configure method passes the settings to

the device and sets the AutoUpdate property back to true.

An example of changing the properties of the Capture class:

dev.Capture.AutoUpdate = false;

dev.Capture.DecimationFactor = 1;

dev.Capture.EnabledAdcMask = 2^dev.MaxAdcPerDevice-1;

dev.Capture.FramesPerPacket = 1;

dev.Capture.SamplesToCapture = 1000;

dev.Capture.WaitTrigger = 1;

dev.Capture.Configure;

An example of changing the properties of the Trigger class:

dev.Trigger.AutoUpdate = false;

dev.Trigger.ConnectToGenerator = true;

dev.Trigger.InvertedInputsMask = 0;

dev.Trigger.EnabledInputsMask = 1;

dev.Trigger.GeneratorFrequency = 15;

dev.Trigger.InputNames(1) = 'OPT';

dev.Trigger.SlaveDelays(1) = 0;

dev.Trigger.InputsDelay = 3;

dev.Trigger.InputsGuard = 10;

dev.Trigger.Configure;

An example of changing the properties of the TriggerOutput class:

dev.Trigger.TriggerOutputs(1).AutoUpdate = false;

dev.Trigger.TriggerOutputs(1).ConnectToGenerator = true;

dev.Trigger.TriggerOutputs(1).PulseWidth = 10;

dev.Trigger.TriggerOutputs(1).SourcesMask = 0;

dev.Trigger.TriggerOutputs(1).Invert = false;

dev.Trigger.TriggerOutputs(1).Enable = true;

dev.Trigger.TriggerOutputs(1).Delay = 1;

dev.Trigger.TriggerOutputs(1).Configure;

Each class property has a certain range of valid values. When you assign a value to a property,

it is validated and the property is changed only if the new value is in that range. Therefore, when

creating a graphical user interface, you should read the property immediately after assignment

and update the corresponding control with the read value. So, the user will be able to see that

the value entered by him is incorrect and it was not saved and was not transferred to the device.

In addition to properties with settings, the Trigger class contains the GetInputFrequencies

method. This method reads the current values of the frequency meters connected to the trigger

inputs. After the call, you must wait for the OnUpdateInputFrequencies event, and then you can

read the frequency values from the Trigger.InputFrequencies array. The handler function has

two arguments, the first one is sent to the device manager, and the second is an empty one. An

example of such a function:

function onupdatefreq(src,~)

 for n = 1:src.Trigger.InputFrequencies.Length

 disp(['Trigger input ' num2str(n) ' frequency is '

 num2str(src.Trigger.InputFrequencies(n))]);

 end

end

The table below shows the code of the captrig.m script from the examples\matlab\ folder,

which implements the data collection control described above. And in the reference section of

this tutorial, you can find a description of all the properties and methods of the Capture, Trigger,

and TriggerOutput classes.

Table 3: Example of the MATLAB Script to Control Data Collection

filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\x64\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

addlistener(dev,'OnUpdateInputFrequencies',@onupdatefreq);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 dev.Capture.AutoUpdate = false;

 dev.Capture.DecimationFactor = 1;

 dev.Capture.EnabledAdcMask = 2^dev.MaxAdcPerDevice-1;

 dev.Capture.FramesPerPacket = 1;

 dev.Capture.SamplesToCapture = 1000;

 dev.Capture.WaitTrigger = 1;

 dev.Capture.Configure;

 dev.Trigger.AutoUpdate = false;

 dev.Trigger.ConnectToGenerator = true;

 dev.Trigger.InvertedInputsMask = 0;

 dev.Trigger.EnabledInputsMask = 1;

 dev.Trigger.GeneratorFrequency = 15;

 dev.Trigger.InputNames(1) = 'OPT';

 dev.Trigger.SlaveDelays(1) = 0;

 dev.Trigger.InputsDelay = 0;

 dev.Trigger.InputsGuard = 10;

 dev.Trigger.Configure;

 dev.Trigger.TriggerOutputs(1).AutoUpdate = false;

 dev.Trigger.TriggerOutputs(1).ConnectToGenerator = true;

 dev.Trigger.TriggerOutputs(1).PulseWidth = 10;

 dev.Trigger.TriggerOutputs(1).SourcesMask = 0;

 dev.Trigger.TriggerOutputs(1).Invert = false;

 dev.Trigger.TriggerOutputs(1).Enable = true;

 dev.Trigger.TriggerOutputs(1).Delay = 1;

 dev.Trigger.TriggerOutputs(1).Configure;

 dev.Trigger.UpdateInputFrequencies;

 data = NET.createArray('System.Int16',dev.MaxSamplesToCapture);

 adc = 0;

 chan = 0;

 fig = figure('Name','Plot data example');

 while isvalid(fig)

 samples = dev.GetPlotData(data,data.Length,0,adc,chan);

 if samples > 0

 tmp = int16(data);

 plot(tmp(1:samples));

 end

 pause(0.1);

 end

else

 disp('Failed to connect to device');

end

dev.Disconnect;

disp('Disconnected');

Controlling Data Acquisition in LabVIEW

 ADC data acquisition is controlled by the Capture, Trigger, and TriggerOutput classes.

Instances of these classes are not created by the user, but by the device manager after

successfully connecting to devices. Links to created instances of classes are stored in the

properties of the same name Capture, Trigger and TriggerOutput of the device manager (the

DeviceManager class). Before connecting devices, these properties contain empty links (null).

 The Capture class allows you to change data acquisition settings, such as the number of data

samples per ADC channel or the flag to wait for a trigger event before starting data collection.

Settings from the properties of the Capture class are passed to all connected devices

simultaneously. The Trigger class defines the condition by which data collection begins, for

example, whether triggering from an internal generator is allowed or the number of an input that

receives an external trigger signal. Settings from the properties of the Trigger class are

transferred to only one device, which is the master. If several masters are connected to the PC,

the settings are only transferred to the first device on the system bus. The TriggerOutput class

defines the parameters for the trigger output, such as pulse width and delay. The settings from

the properties of the TriggerOutput class are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, as shown in the figures below. This value will be automatically transferred

to the device via the system bus, for example USB, and also saved in memory for later writing the

settings to the configuration file. In LabVIEW, instead of making your own value change handler

for each control, you can update multiple properties in a common handler. Since the user can

change the value of only one control at a time, there will be only one new value in the handler.

An internal check in the class will reveal this new value and the settings will be transferred to the

device via the system bus once.

Figure 2: Changing properties of the Trigger class in LabVIEW

Figure 3 Changing Properties of the Capture Class in LabVIEW

Figure 4 Changing Properties of the TriggerOutput Class in LabVIEW

Each class property has a certain range of valid values. When you assign a value to a property,

it is validated and the property is changed only if the new value is in that range. Therefore, when

creating a graphical user interface, you should read the property immediately after assignment

and update the corresponding control with the read value. So, the user will be able to see that

the value entered by him is incorrect and it was not saved and was not transferred to the device.

The figures below show how you can read new property values for all three classes.

Figure 5: Reading Properties of the Capture Class in LabVIEW

Figure 6: Reading Properties of the Trigger Class in LabVIEW

Figure 7: Reading the Properties of the TriggerOutput Class in LabVIEW

In addition to properties with settings, the Trigger class contains the

UpdateInputFrequencies method. This method reads the current values of the counters

connected to the trigger inputs. After calling the method, you must wait for the

OnUpdateInputFrequencies event, and then you can read the frequency values from the

Trigger.InputFrequencies array. The handler function has two arguments, the first is a reference

to the device manager and the second is a null reference. An example of such a function

Figure 8: Measuring Trigger Input Frequencies in LabVIEW

 The examples\labview\ folder contains an example captrig.vi that implements the data

collection control described above. And in the reference section of this tutorial, you can find a

description of all the properties and methods of the Capture, Trigger, and TriggerOutput classes.

Controlling Data Acquisition in Visual Studio C#

ADC data acquisition is controlled by the Capture, Trigger, and TriggerOutput classes.

Instances of these classes are not created by the user, but by the device manager after

successfully connecting to devices. Links to created instances of classes are stored in the

properties of the same name Capture, Trigger and TriggerOutput of the device manager (the

DeviceManager class). Before connecting devices, these properties contain empty links (null).

 The Capture class allows you to change data acquisition settings, such as the number of data

samples per ADC channel or the flag to wait for a trigger event before starting data collection.

Settings from the properties of the Capture class are passed to all connected devices

simultaneously. The Trigger class defines the condition by which data collection begins, for

example, whether triggering from an internal generator is allowed or the number of an input that

receives an external trigger signal. Settings from the properties of the Trigger class are

transferred to only one device, which is the master. If several masters are connected to the PC,

the settings are only transferred to the first device on the system bus. The TriggerOutput class

defines the parameters for the trigger output, such as pulse width and delay. The settings from

the properties of the TriggerOutput class are also transferred only to the first master.

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, for example, deviceManager.Capture.WaitTrigger = true. This value will be

automatically transferred to the device via the system bus, for example USB, and also saved in

memory for later writing the settings to the configuration file. This behavior is well suited for

management through a graphical user interface - the user clicks a button and the settings change

immediately. There is another method that is suitable for programmatically controlling data

collection when many parameters are changed at the same time. In order to prohibit the

automatic transfer of settings to the device, you need to assign the value false to the AutoUpdate

property of the corresponding class. Next, you can assign new values to the properties of the

class and call the Configure method of that class. The Configure method passes the settings to

the device and sets the AutoUpdate property back to true.

An example of changing the properties of the Capture class:

deviceManager.Capture.AutoUpdate = false;
deviceManager.Capture.DecimationFactor = 1;
deviceManager.Capture.EnabledAdcMask = (1u << deviceManager.MaxAdcPerDevice) - 1;
deviceManager.Capture.FramesPerPacket = 1;
deviceManager.Capture.SamplesToCapture = 1000;
deviceManager.Capture.WaitTrigger = true;
deviceManager.Capture.Configure();

An example of changing the properties of the Trigger class:

deviceManager.Trigger.AutoUpdate = false;
deviceManager.Trigger.ConnectToGenerator = true;
deviceManager.Trigger.InvertedInputsMask = 0;
deviceManager.Trigger.EnabledInputsMask = 0;
deviceManager.Trigger.GeneratorFrequency = 10.0;

deviceManager.Trigger.InputNames[0] = "OPT";
deviceManager.Trigger.SlaveDelays[0] = 0;
deviceManager.Trigger.InputsDelay = 0;
deviceManager.Trigger.InputsGuard = 10;
deviceManager.Trigger.Configure();

An example of changing the properties of the TriggerOutput class:

deviceManager.Trigger.TriggerOutputs[0].AutoUpdate = false;
deviceManager.Trigger.TriggerOutputs[0].ConnectToGenerator = true;
deviceManager.Trigger.TriggerOutputs[0].PulseWidth = 10.0;
deviceManager.Trigger.TriggerOutputs[0].SourcesMask = 0;
deviceManager.Trigger.TriggerOutputs[0].Invert = false;
deviceManager.Trigger.TriggerOutputs[0].Enable = true;
deviceManager.Trigger.TriggerOutputs[0].Delay = 0;
deviceManager.Trigger.TriggerOutputs[0].Configure();

Each class property has a certain range of valid values. When you assign a value to a property,

it is validated and the property is changed only if the new value is in that range. Therefore, when

creating a graphical user interface, you should read the property immediately after assignment

and update the corresponding control with the read value. So, the user will be able to see that

the value entered by him is incorrect and it was not saved and was not transferred to the device.

In addition to properties with settings, the Trigger class contains the

UpdateInputFrequencies method. This method reads the current values of the counters

connected to the trigger inputs. After calling the method, you must wait for the

OnUpdateInputFrequencies event, and then you can read the frequency values from the

Trigger.InputFrequencies array. The handler function has two arguments, the first is a reference

to the device manager and the second is a null reference. An example of such a function:

private void OnUpdateInputFrequencies(object sender, EventArgs e)
{
 if (labels == null)
 labels = new Label[4] { labelFreq1, labelFreq2, labelFreq3, labelFreq4 };

 for (int i = 0; i < deviceManager.Trigger.InputFrequencies.Length; i++)
 labels[i].Text = $"Input {i} frequency:

{deviceManager.Trigger.InputFrequencies[i]:F1} Hz";
}

The table below shows the code from the CapTrig example project from the

examples\visual\SdkExamples\ folder that implements the data collection control described

above. And in the reference section of this tutorial, you can find a description of all the properties

and methods of the Capture, Trigger, and TriggerOutput classes.

Table 4: Sample Visual C# Program for Managing Data Collection

using PhotoSoundClasses;
using System;
using System.Windows.Forms;

namespace CapTrig

{
 public partial class CapTrig : Form
 {
 public CapTrig()
 {
 InitializeComponent();
 chart1.Series.Clear();
 var series = chart1.Series.Add("ADC1/CH1");
 series.ChartType =

System.Windows.Forms.DataVisualization.Charting.SeriesChartType.FastLine;
 this.Enabled = false;
 }

 private DeviceManager deviceManager = null;
 private short[] PlotBuffer = null;

 private void Form1_Load(object sender, EventArgs e)
 {
 deviceManager = new DeviceManager();
 deviceManager.OnUpdateInputFrequencies += OnUpdateInputFrequencies;
 deviceManager.OnConnect += OnConnectEventHandler;
 deviceManager.OnError += OnErrorEventHandler;
 deviceManager.Connect();
 }

 private void OnUpdateInputFrequencies(object sender, EventArgs e)
 {
 if (labels == null)
 labels = new Label[4] { labelFreq1, labelFreq2, labelFreq3,

labelFreq4 };

 for (int i = 0; i < deviceManager.Trigger.InputFrequencies.Length;

i++)
 labels[i].Text = $"Input {i} frequency:

{deviceManager.Trigger.InputFrequencies[i]:F1} Hz";
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 int samples = deviceManager.GetPlotData(PlotBuffer, PlotBuffer.Length,

0, 0, 0);
 if (samples > 0)
 {
 chart1.Series[0].Points.Clear();
 chart1.Series[0].Points.DataBindY(new

ArraySegment<short>(PlotBuffer, 0, samples));
 }
 }

 private void OnConnectEventHandler(object sender, EventArgs e)
 {
 PlotBuffer = new short[deviceManager.MaxSamplesToCapture];
 timer1.Start();
 this.Enabled = true;

 deviceManager.Capture.AutoUpdate = false;
 deviceManager.Capture.DecimationFactor = 1;
 deviceManager.Capture.EnabledAdcMask = (1u <<

deviceManager.MaxAdcPerDevice) - 1;
 deviceManager.Capture.FramesPerPacket = 1;
 deviceManager.Capture.SamplesToCapture = 1000;
 deviceManager.Capture.WaitTrigger = true;
 deviceManager.Capture.Configure();

 deviceManager.Trigger.AutoUpdate = false;
 deviceManager.Trigger.ConnectToGenerator = true;
 deviceManager.Trigger.InvertedInputsMask = 0;
 deviceManager.Trigger.EnabledInputsMask = 0;
 deviceManager.Trigger.GeneratorFrequency = 10.0;
 deviceManager.Trigger.InputNames[0] = "OPT";
 deviceManager.Trigger.SlaveDelays[0] = 0;
 deviceManager.Trigger.InputsDelay = 0;
 deviceManager.Trigger.InputsGuard = 10;
 deviceManager.Trigger.Configure();

 deviceManager.Trigger.TriggerOutputs[0].AutoUpdate = false;
 deviceManager.Trigger.TriggerOutputs[0].ConnectToGenerator = true;
 deviceManager.Trigger.TriggerOutputs[0].PulseWidth = 10.0;
 deviceManager.Trigger.TriggerOutputs[0].SourcesMask = 0;
 deviceManager.Trigger.TriggerOutputs[0].Invert = false;
 deviceManager.Trigger.TriggerOutputs[0].Enable = true;
 deviceManager.Trigger.TriggerOutputs[0].Delay = 0;
 deviceManager.Trigger.TriggerOutputs[0].Configure();

 udGeneratorFrequency.Value =

(decimal)deviceManager.Trigger.GeneratorFrequency;
 udSamplesToCapture.Value = deviceManager.Capture.SamplesToCapture;
 cbWaitForTrigger.Checked = true;
 }

 private void OnErrorEventHandler(object sender, MessageEventArgs e)
 {
 MessageBox.Show($"{e.Source.ToString()} error: {e.Message}");
 }

 private void Form1_FormClosed(object sender, FormClosedEventArgs e)
 {
 deviceManager.Disconnect();
 }

 private void udSamplesToCapture_ValueChanged(object sender, EventArgs e)
 {
 deviceManager.Capture.SamplesToCapture =

(int)udSamplesToCapture.Value;
 udSamplesToCapture.Value = deviceManager.Capture.SamplesToCapture;
 }

 private void udGeneratorFrequency_ValueChanged(object sender, EventArgs e)
 {
 deviceManager.Trigger.GeneratorFrequency =

(double)udGeneratorFrequency.Value;
 udGeneratorFrequency.Value =

(decimal)deviceManager.Trigger.GeneratorFrequency;
 }

 private void cbWaitForTrigger_CheckedChanged(object sender, EventArgs e)
 {
 deviceManager.Capture.WaitTrigger = cbWaitForTrigger.Checked;
 }

 private Label[] labels = null;

 private void buttonUpdate_Click(object sender, EventArgs e)
 {
 deviceManager.Trigger.UpdateInputFrequencies();
 }

Recording data to a File in MATLAB

Data is written to a file using the DataLogger class. Instances of this class (data loggers) are

created by the user using the CreateLogger method of the device manager (the DeviceManager

class):

logger = dev.CreateLogger('Matlab');

Call the CreateLogger method only after connecting to devices, otherwise the method

returns an empty reference. The method returns a reference to the created data logger, and its

arguments are the name of the created data logger and the length of the queue when writing to

memory, which is discussed in the section. The name is used to save the settings of the logger in

the configuration file. The user can create an arbitrary number of data loggers. Each logger can

write data from one or several devices to binary files with the raw extension, and several loggers

can receive data from the same device.

The logger starts writing ADC data to a file after calling its StartLoggingToFile method with a

file name without an extension as an argument. The path to the file being written is determined

by the DataFolder property of the logger:

logger.DataFolder = app_path;

logger.StartLoggingToFile('TestData');

Immediately after the successful start of the recording, the logger sets the value of the

Logging property to true, and after the end of the recording – to false. The end of writing to the

file occurs when the StopLogging method of the logger is called:

logger.StopLogging;

The logger can automatically end recording to the file if one of the restrictive conditions set

before the start of recording is met. These conditions include exceeding the file size in

megabytes, exceeding the file recording time, and exceeding the number of recorded frames. An

example of setting these conditions through the properties of the logger is presented below:

logger.MaxFileSize = 100;

logger.MaxLoggedFrames = 100;

logger.LoggingTimeout = 60;

logger.LimitLoggingTime = true;

logger.LimitNumFrames = true;

logger.LimitFileSize = true;

Data recording to a file can be controlled using the properties-states of the logger: Progress

– recording progress in percent, FileSize – the current size of the data file in megabytes,

 }
}

NumLoggedFrames – the current number of recorded ADC data frames and LoggingTime – the

current time from the beginning of the file recording in seconds. The Progress property shows

the actual progress of the recording only if one of the restrictive conditions MaxFileSize or

MaxLoggedFrames is specified, and the progress refers to the one closest to the fulfillment of

the condition. The logging time LoggingTime is not used to calculate the logging progress, since

the time control is intended only for an emergency stop of logging to a file as a result of some

unforeseen situation, for example, due to non-receipt of data when the optical trigger signal is

turned off. Below is an example of displaying the current state of the logger:

k = fprintf('Logging: %d%%, %6.2f MB, %d frames, %6.2f s',...

logger.Progress,logger.FileSize,logger.NumLoggedFrames,...

logger.LoggingTime);

The table below shows the filesave.m script code from the examples\matlab\ folder, which

implements the data collection control described above. Also in the

examples\matlab\RawConverter\ folder there is a Raw2Mat.m script for converting a RAW file

to MAT format. In the reference section of this tutorial, you can find a description of all the

properties and methods of the DataLogger class, as well as a description of the data file format.

Table 5: An example MATLAB script to write ADC data to a file

filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\PhotoSoundSDK\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 data = NET.createArray('System.Int16',dev.MaxSamplesToCapture);

 k = 0;

 adc = 0;

 chan = 0;

 fig = figure('Name','Plot data example');

 logger = dev.CreateLogger('Matlab');

 logger.DataFolder = app_path;

 logger.DevicesMask = 2^dev.DevicesCount-1;

 logger.MaxFileSize = 100;

 logger.MaxLoggedFrames = 100;

 logger.LoggingTimeout = 60;

 logger.LimitLoggingTime = true;

 logger.LimitNumFrames = true;

 logger.LimitFileSize = true;

 logger.StartLoggingToFile('TestData');

Recording Data to a File in LabVIEW

 Data is written to a file using the DataLogger class.

Instances of this class (data loggers) are created by the user

using the CreateLogger method of the DeviceManager

(Figure 9). Call the CreateLogger method only after

connecting to devices, otherwise the method returns an

empty reference. The method returns a reference to the

created data logger, and its arguments are the name of the created data logger and the length

of the queue when writing to memory, which is discussed the DataLogger class below. The name

is used to save the settings of the logger in the configuration file. The user can create an arbitrary

number of data loggers. Each logger can write data from one or several devices to binary files

with the RAW extension, and several loggers can receive data from the same device.

The logger starts writing ADC data to a file after calling its StartLoggingToFile method with a

file name without an extension as an argument. The path to the file being written is determined

by the DataFolder property of the logger. The end of writing to the file occurs when the

StopLogging method of the logger is called (Figure 10). Immediately after the successful start of

 logging = true;

 while isvalid(fig)

 samples = dev.GetPlotData(data,data.Length,0,adc,chan);

 if samples > 0

 tmp = int16(data);

 plot(tmp(1:samples));

 end

 for m=1:k

 fprintf('\b');

 end

 k = 0;

 if logger.Logging

 k = fprintf('Logging: %d%%, %6.2f MB, %d frames, %6.2f s',...

 logger.Progress,logger.FileSize,logger.NumLoggedFrames,...

 logger.LoggingTime);

 elseif logging

 logging = false;

 fprintf('Logging was finished\n');

 end

 pause(0.1);

 end

 logger.StopLogging;

else

 disp('Failed to connect to device');

end

dev.Disconnect;

fprintf('\nDisconnected\n');

Figure 9 Creating a Data Logger
in LabVIEW

the recording, the logger sets the value of the Logging property to true, and after the end of the

recording – to false.

Figure 10: Starting and Stopping Writing Data to a File in LabVIEW

The logger can automatically end recording to the file if one of the restrictive conditions set

before the start of recording is met. These conditions include exceeding the file size in

megabytes, exceeding the file recording time, and exceeding the number of recorded frames. An

example of setting these conditions through the properties of the registrar is presented below:

Figure 11: Configuring the Logger to Stop Conditional Recording in LabVIEW

Data recording to a file can be controlled using the properties-states of the logger: Progress

– recording progress in percent, FileSize – the current size of the data file in megabytes,

NumLoggedFrames – the current number of recorded ADC data frames and LoggingTime – the

current time from the beginning of the file recording in seconds. The Progress property shows

the actual progress of the recording only if one of the restrictive conditions MaxFileSize or

MaxLoggedFrames is specified, and the progress refers to the one closest to the fulfillment of

the condition. The recording time LoggingTime is not used to calculate the recording progress,

since the time control is intended only for the emergency stop of recording to the file as a result

of some unforeseen situation, for example, due to non-receipt of data when the optical trigger

signal is turned off.

Figure 12: Checking the Status of Writing to a File in LabVIEW

The examples\labview\ folder contains an example filesave.vi that implements the above

writing of ADC data to a file. Also in this folder is an example fileplay.vi, which reads data from a

data file and displays it on a graph. In the reference section of this tutorial, you can find a

description of all the properties and methods of the DataLogger class, as well as a description of

the data file format.

Recording Data to a File in Visual Studio C#

Data is written to a file using the DataLogger class. Instances of this class (data loggers) are

created by the user using the CreateLogger method of the device manager (the DeviceManager

class):

logger = deviceManager.CreateLogger("FileSave");

Call the CreateLogger method only after connecting to devices, otherwise the method

returns an empty reference. The method returns a reference to the created data logger, and its

arguments are the name of the created data logger and the length of the queue when writing to

memory, which is discussed in the section. The name is used to save the settings of the logger in

the configuration file. The user can create an arbitrary number of data loggers. Each logger can

write data from one or several devices to binary files with the RAW extension, and several loggers

can receive data from the same device.

The logger starts writing ADC data to a file after calling its StartLoggingToFile method with a

file name without extension as an argument:

logger.StartLoggingToFile("Data " + DateTime.Now.ToString("yyyy-MM-dd HH-mm-ss"));

The path to the file being written is determined by the DataFolder property of the logger.

The end of writing to the file occurs when the StopLogging method of the logger is called:

logger.StopLogging();

When recording starts and stops, the logger generates the OnStartLogging and

OnStopLogging events, respectively. Events have a standard signature and can be used to change

the locking of control buttons.

The logger can automatically end recording to the file if one of the restrictive conditions set

before the start of recording is met. These conditions include exceeding the file size in

megabytes, exceeding the file recording time, and exceeding the number of recorded frames.

Below is an example of assigning these properties using the controls of the main window:

logger.LoggingTimeout = (double)udLoggingTimeout.Value;
logger.MaxLoggedFrames = (int)udNumLoggedFrames.Value;
logger.MaxFileSize = (double)udMaxFileSize.Value;
logger.LimitLoggingTime = cbLimitLoggingTime.Checked;
logger.LimitNumFrames = cbLimitNumFrames.Checked;
logger.LimitFileSize = cbLimitFileSize.Checked;

Data recording to a file can be controlled using the properties-states of the logger: Progress

– recording progress in percent, FileSize – the current size of the data file in megabytes,

NumLoggedFrames – the current number of recorded ADC data frames and LoggingTime – the

current time from the beginning of the file recording in seconds. The Progress property shows

the actual progress of the recording only if one of the restrictive conditions MaxFileSize or

MaxLoggedFrames is specified, and the progress refers to the one closest to the fulfillment of

the condition. The recording time LoggingTime is not used to calculate the recording progress,

since the time control is intended only for the emergency stop of recording to the file as a result

of some unforeseen situation, for example, due to non-receipt of data when the optical trigger

signal is turned off. Below is the display of the status of the logger in the main window:

labelLoggedFrames.Text = $"Logged frames: {logger.NumLoggedFrames}";
labelLoggingTime.Text = $"Logging time: {logger.LoggingTime:F2} s";
labelFileSize.Text = $"File size: {logger.FileSize:F2} MB";
labelProgress.Text = $"Progress: {logger.Progress}%";

The table below shows the code from a sample FileSave project from the

examples\visual\SdkExamples\ folder that implements the above writing data to a file. Also, in

this folder is the FilePlay project, which reads data from the data file and displays it on the chart.

In the reference section of this tutorial, you can find a description of all the properties and

methods of the DataLogger class, as well as a description of the data file format.

The code in the table below shows an example of using the Device Manager

OnPropertyChanged event. This event is triggered when one of the properties of the object that

is the source of the event changes. In this case, you are only interested in changes after loading

property values from the configuration file. The handler for this event has arguments: object

sender (always a reference to the device manager) and a reference e to an instance of the

EmptyEventArgs class, which has a Source property - the event source, in this case, Source

should contain a reference to the user-created datalogger. Below is an example of how to

initialize the controls of the main window with the values read from the configuration file after

creating the data logger:

private void OnPropertyChangedEventHandler(object sender, EmptyEventArgs e)
{

if (e.Source == logger)
{

udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;
udMaxFileSize.Value = (decimal)logger.MaxFileSize;

udNumLoggedFrames.Value = logger.MaxLoggedFrames;
cbLimitLoggingTime.Checked = logger.LimitLoggingTime;
cbLimitNumFrames.Checked = logger.LimitNumFrames;
cbLimitFileSize.Checked = logger.LimitFileSize;
labelFolder.Text = logger.DataFolder;

}
}

Table 6: Visual C# programs to write data to a file

using PhotoSoundClasses;
using System;
using System.Windows.Forms;

namespace FileSave
{
 public partial class FileSave : Form
 {
 public FileSave()
 {
 InitializeComponent();
 chart1.Series.Clear();
 var series = chart1.Series.Add("ADC1/CH1");
 series.ChartType =
System.Windows.Forms.DataVisualization.Charting.SeriesChartType.FastLine;
 this.Enabled = false;
 }

 private DeviceManager deviceManager = null;
 private short[] PlotBuffer = null;

 private void FileSave_Load(object sender, EventArgs e)
 {
 deviceManager = new DeviceManager();
 deviceManager.OnConnect += OnConnectEventHandler;
 deviceManager.OnError += OnErrorEventHandler;
 deviceManager.Connect();
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 int samples = deviceManager.GetPlotData(PlotBuffer, PlotBuffer.Length, 0, 0, 0);
 if (samples > 0)
 {
 chart1.Series[0].Points.Clear();
 chart1.Series[0].Points.DataBindY(new ArraySegment<short>(PlotBuffer, 0,
samples));
 }

 labelLoggedFrames.Text = $"Logged frames: {logger.NumLoggedFrames}";
 labelLoggingTime.Text = $"Logging time: {logger.LoggingTime:F2} s";
 labelFileSize.Text = $"File size: {logger.FileSize:F2} MB";
 labelProgress.Text = $"Progress: {logger.Progress}%";
 }

 private DataLogger logger = null;

 private void OnConnectEventHandler(object sender, EventArgs e)
 {
 PlotBuffer = new short[deviceManager.MaxSamplesToCapture];
 logger = deviceManager.CreateLogger("FileSave");
 deviceManager.OnPropertyChanged += OnPropertyChangedEventHandler;

 timer1.Start();
 this.Enabled = true;
 }

 private void OnPropertyChangedEventHandler(object sender, EmptyEventArgs e)
 {
 if (e.Source == logger)
 {
 udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;
 udMaxFileSize.Value = (decimal)logger.MaxFileSize;
 udNumLoggedFrames.Value = logger.MaxLoggedFrames;
 cbLimitLoggingTime.Checked = logger.LimitLoggingTime;
 cbLimitNumFrames.Checked = logger.LimitNumFrames;
 cbLimitFileSize.Checked = logger.LimitFileSize;
 labelFolder.Text = logger.DataFolder;
 }
 }

 private void OnErrorEventHandler(object sender, MessageEventArgs e)
 {
 MessageBox.Show($"{e.Source.ToString()} error: {e.Message}");
 }

 private void FileSave_FormClosed(object sender, FormClosedEventArgs e)
 {
 deviceManager.Disconnect();
 }

 private void buttonBrowse_Click(object sender, EventArgs e)
 {
 folderBrowserDialog1.SelectedPath = logger.DataFolder;
 if (folderBrowserDialog1.ShowDialog() == DialogResult.OK)
 logger.DataFolder = folderBrowserDialog1.SelectedPath;
 }

 private void buttonStart_Click(object sender, EventArgs e)
 {
 logger.StartLoggingToFile("Data " + DateTime.Now.ToString("yyyy-MM-dd HH-mm-
ss"));
 }

 private void buttonStop_Click(object sender, EventArgs e)
 {
 logger.StopLogging();
 }

 private void udMaxFileSize_ValueChanged(object sender, EventArgs e)
 {
 logger.MaxFileSize = (double)udMaxFileSize.Value;
 udMaxFileSize.Value = (decimal)logger.MaxFileSize;
 }

 private void udNumLoggedFrames_ValueChanged(object sender, EventArgs e)
 {
 logger.MaxLoggedFrames = (int)udNumLoggedFrames.Value;
 udNumLoggedFrames.Value = logger.MaxLoggedFrames;
 }

 private void udLoggingTimeout_ValueChanged(object sender, EventArgs e)
 {
 logger.LoggingTimeout = (double)udLoggingTimeout.Value;
 udLoggingTimeout.Value = (decimal)logger.LoggingTimeout;
 }

ADC AFE5818 setup in MATLAB

The AFE5818 ADC is configured using the AFE5818 and AFE5818Vca classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5818 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains an empty reference (null).

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, for example dev.AFE5818.LowNoiseMode = true. This value will be

automatically transferred to the device via the system bus, for example USB, and also saved in

memory for later writing the settings to the configuration file. Some parameters are represented

by enumerated (enum) properties, for example, the PowerMode property of the AFE5818Vca

class. Only certain values can be assigned to such properties, which can be viewed using the

MATLAB enumeration command. An example of using this command is below:

 In order to assign any value to the enum property in MATLAB, you must first obtain a list

of values in a variable, and then use this variable with the index of the desired value. An example

of obtaining such lists for the enum property of the AFE5818Vca class is presented below:

PowerMode = System.Enum.GetValues(dev.AFE5818.Vca1.PowerMode.GetType);

HpfCutoffFreq =

System.Enum.GetValues(dev.AFE5818.Vca1.HpfCutoffFreq.GetType);

 private void cbLimitNumFrames_CheckedChanged(object sender, EventArgs e)
 {
 logger.LimitNumFrames = cbLimitNumFrames.Checked;
 }

 private void cbLimitLoggingTime_CheckedChanged(object sender, EventArgs e)
 {
 logger.LimitLoggingTime = cbLimitLoggingTime.Checked;
 }

 private void cbLimitFileSize_CheckedChanged(object sender, EventArgs e)
 {
 logger.LimitFileSize = cbLimitFileSize.Checked;
 }
 }
}

LpfCutoffFreq =

System.Enum.GetValues(dev.AFE5818.Vca1.LpfCutoffFreq.GetType);

TgcAttenuation =

System.Enum.GetValues(dev.AFE5818.Vca1.TgcAttenuation.GetType);

LnaGlobalGain =

System.Enum.GetValues(dev.AFE5818.Vca1.LnaGlobalGain.GetType);

PgaGain = System.Enum.GetValues(dev.AFE5818.Vca1.PgaGain.GetType);

Below is an example of setting up the AFE5818 ADC. In order not to transmit data to the

device every time one parameter is changed, first you need to assign the value false to the

AutoUpdate property, and after changing all the parameters, you need to call the Configure

method of the AFE5818 class.

 dev.AFE5818.AutoUpdate = false;

 dev.AFE5818.ConfiguredAdcMask = 2^dev.MaxAdcPerDevice-1;

 dev.AFE5818.ConfiguredDevicesMask = 2^dev.DevicesCount-1;

 dev.AFE5818.Vca1EqualsVca2 = true;

 dev.AFE5818.Vca1.HpfCutoffDivided = false;

 dev.AFE5818.Vca1.LowNoiseMode = true;

 dev.AFE5818.Vca1.PgaHpfDisabled = false;

 dev.AFE5818.Vca1.LnaHpfDisabled = false;

 dev.AFE5818.Vca1.PgaClampEnabled = true;

 dev.AFE5818.Vca1.F5MHzLpfEnabled = true;

 dev.AFE5818.Vca1.TgcAttEnabled = true;

 dev.AFE5818.Vca1.PowerMode = PowerMode(2);

 dev.AFE5818.Vca1.HpfCutoffFreq = HpfCutoffFreq(2);

 dev.AFE5818.Vca1.LpfCutoffFreq = LpfCutoffFreq(2);

 dev.AFE5818.Vca1.TgcAttenuation = TgcAttenuation(2);

 dev.AFE5818.Vca1.LnaGlobalGain = LnaGlobalGain(2);

 dev.AFE5818.Vca1.PgaGain = PgaGain(2);

 dev.AFE5818.Configure;

Only the basic parameters of the ADC can be changed using the properties of the AFE5818

and AFE5818Vca classes. All other parameters can be edited in the AFE5818.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The table below shows the script code afe5818.m from the examples\matlab\ folder, which

implements the ADC setup described above. And in the reference section of this manual, you can

find a description of all the properties and methods of the AFE5818 and AFE5818Vca classes.

Table 7: Example of the AFE5818 ADC configuration in MATLAB

filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\x64\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 PowerMode = System.Enum.GetValues(dev.AFE5818.Vca1.PowerMode.GetType);

 HpfCutoffFreq =

System.Enum.GetValues(dev.AFE5818.Vca1.HpfCutoffFreq.GetType);

 LpfCutoffFreq =

System.Enum.GetValues(dev.AFE5818.Vca1.LpfCutoffFreq.GetType);

 TgcAttenuation =

System.Enum.GetValues(dev.AFE5818.Vca1.TgcAttenuation.GetType);

 LnaGlobalGain =

System.Enum.GetValues(dev.AFE5818.Vca1.LnaGlobalGain.GetType);

 PgaGain = System.Enum.GetValues(dev.AFE5818.Vca1.PgaGain.GetType);

 dev.AFE5818.AutoUpdate = false;

 dev.AFE5818.ConfiguredAdcMask = 2^dev.MaxAdcPerDevice-1;

 dev.AFE5818.ConfiguredDevicesMask = 2^dev.DevicesCount-1;

 dev.AFE5818.Vca1EqualsVca2 = true;

 dev.AFE5818.Vca1.HpfCutoffDivided = false;

 dev.AFE5818.Vca1.LowNoiseMode = true;

 dev.AFE5818.Vca1.PgaHpfDisabled = false;

 dev.AFE5818.Vca1.LnaHpfDisabled = false;

 dev.AFE5818.Vca1.PgaClampEnabled = true;

 dev.AFE5818.Vca1.F5MHzLpfEnabled = true;

 dev.AFE5818.Vca1.TgcAttEnabled = true;

 dev.AFE5818.Vca1.PowerMode = PowerMode(2);

 dev.AFE5818.Vca1.HpfCutoffFreq = HpfCutoffFreq(2);

 dev.AFE5818.Vca1.LpfCutoffFreq = LpfCutoffFreq(2);

 dev.AFE5818.Vca1.TgcAttenuation = TgcAttenuation(2);

 dev.AFE5818.Vca1.LnaGlobalGain = LnaGlobalGain(2);

 dev.AFE5818.Vca1.PgaGain = PgaGain(2);

 dev.AFE5818.Configure;

 data = NET.createArray('System.Int16',dev.MaxSamplesToCapture);

 adc = 0;

 chan = 0;

 fig = figure('Name','Plot data example');

 while isvalid(fig)

 samples = dev.GetPlotData(data,data.Length,0,adc,chan);

 if samples > 0

 tmp = int16(data);

 plot(tmp(1:samples));

 end

 pause(0.1);

 end

else

 disp('Failed to connect to device');

end

dev.Disconnect;

disp('Disconnected');

ADC AFE5818 setup in LabVIEW

 The AFE5818 ADC is configured using the AFE5818 and AFE5818Vca classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5818 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains an empty reference (null).

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, as shown in the figures below. This value will be automatically transferred

to the device via the system bus, for example USB, and also saved in memory for later writing the

settings to the configuration file. In LabVIEW, instead of making your own value change handler

for each control, you can update multiple properties in a common handler. Since the user can

change the value of only one control at a time, there will be only one new value in the handler.

An internal check in the class will reveal this new value and the settings will be transferred to the

device via the system bus once.

Figure 13 Changing the Properties of the AFE6818 and AFE5818Vca Classes in LabVIEW

Each class property has a certain range of valid values. When you assign a value to a property,

it is validated and the property is changed only if the new value is in that range. Therefore, when

creating a graphical user interface, you should read the property immediately after assignment

and update the corresponding control with the read value. So, the user will be able to see that

the value entered by him is incorrect and it was not saved and was not transferred to the device.

The pictures below show how new property values can be read.

Figure 14. Reading Properties of the AFE5818 and AFE5818Vca Classes in LabVIEW.

Only the basic parameters of the ADC can be changed using the properties of the AFE5818

and AFE5818Vca classes. All other parameters can be edited in the AFE5818.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The examples\labview\ folder contains an example afe5818.vi that implements the ADC

setup described above. And in the reference section of this manual, you can find a description of

all the properties and methods of the AFE5818 and AFE5818Vca classes.

ADC AFE5818 setup in Visual Studio C#

 The AFE5818 ADC is configured using the AFE5818 and AFE5818Vca classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5818 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains an empty reference (null).

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, for example deviceManager.AFE5818.LowNoiseMode = true. This value

will be automatically transferred to the device via the system bus, for example USB, and also

saved in memory for later writing the settings to the configuration file. To make it easier to work

with class properties, you can use the PropertyGrid control. If you assign it to the SelectedObject

property a reference to the AFE5818 class: propertyGrid1.SelectedObject =

deviceManager.AFE5818, then you can edit all the properties of this class and the AFE5818Vca

class for the Vca1 and Vca2 properties. After the user has assigned a new value to a property,

the PropertyGrid control writes the property and then reads it back and displays the read value

in the window. Thus, the check for the range of valid values is performed automatically. In

addition, the PropertyGrid generates lists for enumerated properties from which the user can

select the desired value.

 Only the basic parameters of the ADC can be changed using the properties of the AFE5818

and AFE5818Vca classes. All other parameters can be edited in the AFE5818.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5818.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The table below shows the code from the example project AFE5818_AFE5832 from the

examples\visual\SdkExamples\ folder, which implements the ADC setup described above. And in

the reference section of this guide, you can find a description of all the properties and methods

of the AFE5818 and AFE5818Vca classes.

Table 8: Sample Visual C# Program for Managing Data Collection

using PhotoSoundClasses;

using System;

using System.Windows.Forms;

namespace AFE5818_AFE5832

{

 public partial class AFE5818_AFE5832 : Form

 {

 public AFE5818_AFE5832()

 {

 InitializeComponent();

 chart1.Series.Clear();

 var series = chart1.Series.Add("ADC1/CH1");

 series.ChartType =
System.Windows.Forms.DataVisualization.Charting.SeriesChartType.FastLine;

 }

 private DeviceManager deviceManager = null;

 private short[] PlotBuffer = null;

 private void AFE5818_AFE5832_Load(object sender, EventArgs e)

 {

 deviceManager = new DeviceManager();

 deviceManager.OnConnect += OnConnectEventHandler;

 deviceManager.OnError += OnErrorEventHandler;

 deviceManager.Connect();

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 int samples = deviceManager.GetPlotData(PlotBuffer, PlotBuffer.Length, 0,
0, 0);

 if (samples > 0)

 {

 chart1.Series[0].Points.Clear();

 chart1.Series[0].Points.DataBindY(new ArraySegment<short>(PlotBuffer,
0, samples));

 }

 }

 private void OnConnectEventHandler(object sender, EventArgs e)

 {

 PlotBuffer = new short[deviceManager.MaxSamplesToCapture];

 timer1.Start();

 propertyGrid1.SelectedObject = deviceManager.AFE5818;

 rbAFE5818.Checked = true;

 }

 private void OnErrorEventHandler(object sender, MessageEventArgs e)

 {

 MessageBox.Show($"{e.Source.ToString()} error: {e.Message}");

 }

 private void AFE5818_AFE5832_FormClosed(object sender, FormClosedEventArgs e)

 {

 deviceManager?.Disconnect();

 }

 private void rbAFE5818_CheckedChanged(object sender, EventArgs e)

ADC AFE5832 setup in Matlab

 The AFE5832 ADC is configured using the AFE5832 and AFE5832Die classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5832 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains a null reference.

 To change any parameter, you just need to assign a new value to the corresponding

property of the class instance, for example dev.AFE5832. EnableAttenuatorHpf= true. This value

will be automatically transferred to the device via the system bus, for example USB, and also

saved in memory for later writing the settings to the configuration file. Some parameters are

represented by enumerated properties, for example, the AttenuatorHpfCorner property of the

AFE5832 class. These properties can only be assigned specific values, which can be viewed using

the MATLAB enumeration command. An example of using this command is below:

 {

 if (deviceManager.Connected)

 {

 RadioButton rb = sender as RadioButton;

 if (rb == rbAFE5818)

 propertyGrid1.SelectedObject = deviceManager.AFE5818;

 else if (rb == rbAFE5832)

 propertyGrid1.SelectedObject = deviceManager.AFE5832;

 }

 }

 }

}

In order to assign any value to the enum property in Matlab, you must first get a list of values

in a variable, and then use this variable with the index of the desired value. An example of

obtaining such lists for enum properties of the AFE5832 and AFE5832die classes is presented

below:

AttenuatorHpfCorner =

System.Enum.GetValues(dev.AFE5832.AttenuatorHpfCorner.GetType);

LpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.Odd.LpfCutoffFreq.GetType);

HpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.Odd.HpfCutoffFreq.GetType);

Below is an example of setting up the AFE5832 ADC. In order not to transfer data to the

device every time one parameter is changed, first you need to set the AutoUpdate property to

false, and after changing all the parameters, you need to call the Configure method of the

AFE5818 class.

dev.AFE5832.AutoUpdate = false;

dev.AFE5832.ConfiguredAdcMask = 2^dev.MaxAdcPerDevice-1;

dev.AFE5832.ConfiguredDevicesMask = 2^dev.DevicesCount-1;

dev.AFE5832.EnableAttenuatorHpf = true;

dev.AFE5832.AttenuatorHpfCorner = AttenuatorHpfCorner(1);

dev.AFE5832.OddEqualEven = true;

dev.AFE5832.Odd.LpfCutoffFreq = LpfCutoffFreq(1);

dev.AFE5832.Odd.HpfCutoffFreq = HpfCutoffFreq(1);

dev.AFE5832.Odd.DtgcGain = 30;

dev.AFE5832.Odd.EnableLnaHpf = true;

dev.AFE5832.Odd.LowPowerMode = false;

dev.AFE5832.Odd.EnableDtgcAttenuator = true;

dev.AFE5832.Configure;

Only the basic parameters of the ADC can be changed using the properties of the AFE5832

and AFE5832Die classes. All other parameters can be edited in the AFE5832.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The table below shows the afe5832.m script code from the examples\matlab\ folder, which

implements the ADC setup described above. And in the reference section of this guide, you can

find a description of all the properties and methods of the AFE5832 and AFE5832Die classes.

Table 9: Example of MATLAB Script for AFE5832 ADC setup

filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\x64\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 AttenuatorHpfCorner =

System.Enum.GetValues(dev.AFE5832.AttenuatorHpfCorner.GetType);

 LpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.Odd.LpfCutoffFreq.GetType);

 HpfCutoffFreq =

System.Enum.GetValues(dev.AFE5832.Odd.HpfCutoffFreq.GetType);

 dev.AFE5832.AutoUpdate = false;

 dev.AFE5832.ConfiguredAdcMask = 2^dev.MaxAdcPerDevice-1;

 dev.AFE5832.ConfiguredDevicesMask = 2^dev.DevicesCount-1;

 dev.AFE5832.EnableAttenuatorHpf = true;

 dev.AFE5832.AttenuatorHpfCorner = AttenuatorHpfCorner(1);

 dev.AFE5832.OddEqualEven = true;

 dev.AFE5832.Odd.LpfCutoffFreq = LpfCutoffFreq(1);

 dev.AFE5832.Odd.HpfCutoffFreq = HpfCutoffFreq(1);

 dev.AFE5832.Odd.DtgcGain = 30;

 dev.AFE5832.Odd.EnableLnaHpf = true;

 dev.AFE5832.Odd.LowPowerMode = false;

 dev.AFE5832.Odd.EnableDtgcAttenuator = true;

 dev.AFE5832.Configure;

 data = NET.createArray('System.Int16',dev.MaxSamplesToCapture);

 adc = 0;

 chan = 0;

 fig = figure('Name','Plot data example');

 while isvalid(fig)

 samples = dev.GetPlotData(data,data.Length,0,adc,chan);

 if samples > 0

 tmp = int16(data);

 plot(tmp(1:samples));

 end

 pause(0.1);

 end

else

 disp('Failed to connect to device');

end

dev.Disconnect;

disp('Disconnected');

ADC AFE5832 setup in LabVIEW

 The AFE5832 ADC is configured using the AFE5832 and AFE5832Die classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5832 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains a null reference.

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, as shown in the figures below. This value will be automatically transferred

to the device via the system bus, for example USB, and also saved in memory for later writing the

settings to the configuration file. In LabVIEW, instead of making your own value change handler

for each control, you can update multiple properties in a common handler. Since the user can

change the value of only one control at a time, there will be only one new value in the handler.

An internal check in the class will reveal this new value and the settings will be transferred to the

device via the system bus once.

Figure 15: Modifying the Properties of the AFE5832 and AFE5832Die Classes in LabVIEW

Each class property has a certain range of valid values. When you assign a value to a property,

it is validated and the property is changed only if the new value is in that range. Therefore, when

creating a graphical user interface, you should read the property immediately after assignment

and update the corresponding control with the read value. So, the user will be able to see that

the value entered by him is incorrect and it was not saved and was not transferred to the device.

The pictures below show how new property values can be read.

Figure 16 Reading Properties of the AFE5832 and AFE5832Die Classes in LabVIEW

Only the basic parameters of the ADC can be changed using the properties of the AFE5832

and AFE5832Die classes. All other parameters can be edited in the AFE5832.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The examples\labview\ folder contains an example afe5832.vi that implements the ADC

setup described above. And in the reference section of this guide, you can find a description of

all the properties and methods of the AFE5832 and AFE5832Die classes.

ADC AFE5832 setup in Visual Studio C#

 The AFE5832 ADC is configured using the AFE5832 and AFE5832Die classes. Instances of

these classes are not created by the user, but by the device manager after successfully connecting

to devices. The link to the created instances is stored in the AFE5832 property of the same name

of the device manager (the DeviceManager class). Before connecting devices, this property

contains a null reference.

To change any parameter, you just need to assign a new value to the corresponding property

of the class instance, for example dev.AFE5832. EnableAttenuatorHpf= true. This value will be

automatically transferred to the device via the system bus, for example USB, and also saved in

memory for later writing the settings to the configuration file. To make it easier to work with

class properties, you can use the PropertyGrid control. If you assign it to the SelectedObject

property a reference to the AFE5832 class: propertyGrid1.SelectedObject =

deviceManager.AFE5832, then you can edit all the properties of this class and the AFE5832Die

class for the Odd and Even properties. After the user has assigned a new value to a property, the

PropertyGrid control writes the property and then reads it back and displays the read value in

the window. Thus, the check for the range of valid values is performed automatically. In addition,

the PropertyGrid generates lists for enumerated properties from which the user can select the

desired value.

Only the basic parameters of the ADC can be changed using the properties of the AFE5832

and AFE5832Die classes. All other parameters can be edited in the AFE5832.xlsm file located in

the doc SDK folder. After finishing editing, you need to click the "Create ini file" button on the

"Result" page, and copy the generated AFE5832.ini to the PhotoSoundLibs\Device\ folder. When

the device is turned on for the first time, a new file will be loaded into the device and the ADC

will work with the new parameters.

The table () shows the code from the example project AFE5818_AFE5832 from the examples\

visual\SdkExamples\ folder, which implements the ADC setup described above. In the reference

section of this guide, you can find a description of all the properties and methods of the AFE5832

and AFE5832Die classes.

Real-time data processing in MATLAB

Data processing in real time in the MATLAB environment is discussed below using the

example of constructing a sonogram. As a result of processing, the user can see a video image on

the screen displaying information about the signal in the sensors of the connected ultrasound

sensor.

Receiving ADC data for processing is carried out using the DataLogger class. Instances of this

class (data loggers) are created by the user using the CreateLogger method of the device manager

(the DeviceManager class):

logger = dev.CreateLogger('RealTime',1);

Call the CreateLogger method only after connecting to devices, otherwise the method

returns an empty reference. The method returns a reference to the created data logger, and its

arguments are the name of the created data logger and the length of the queue when writing to

memory. The name is used to save the settings of the recorder in the configuration file. The

queue length is measured in ADC data frames and can be 1 or more. For a queue with losses, as

a rule, 1 is sufficient, and for queues without losses, this value should be selected experimentally

so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, which determine the duration

of data entry and the device from which the data is read:

logger.LimitLoggingTime = false;

logger.LimitNumFrames = false;

logger.DevicesMask = 1;

The logger starts writing ADC data to a queue in memory immediately after calling its

StartLoggingToMemory(LossyQueue) method, where LossyQueue = true for lossy queues:

logger.StartLoggingToMemory(true);

Before retrieving data from the queue, you need to prepare a buffer for them in memory.

This can be done using the Matlab NET.createArray command. The amount of allocated memory

can be set to the maximum, and then the actual amount of data can be determined:

FrameBuffer =

NET.createArray('System.Int16',dev.MaxSamplesToCapture*dev.MaxChannelsToCaptu

re);

The GetFrame method is directly involved in retrieving data from memory:

[valid,channels,samples,frame_num,trig_time,trig_src,sample_rate] =

logger.GetFrame(FrameBuffer,false);

The input arguments of the method are the allocated data buffer in memory and the sign of

frame transposition. If it is true, then the first index (row) specifies the sample number (time),

and the second (column) specifies the channel number. Otherwise, the line defines the channel,

and the column defines the time. When called, the method expects data and, if the timeout has

not expired, then it returns valid = true and fills the rest of the output arguments with the

parameters of the data frame. The output parameters of the data frame are described in more

detail in the reference section.

The construction of a sinogram is reduced to the permutation of the data in accordance with

the channel map. The channel map is an ordered array with ADC channel numbers, the array

index corresponds to the channel number of the ultrasound sensor:

tmpData = single(FrameBuffer);

frame = reshape(tmpData(1:(channels*samples)),samples,channels);

mapped = frame(:,chmap);

At the end of processing, the result is scaled by the range of values and displayed as an image

with a specified color palette on the screen:

image = imagesc('XData',1:channels,'YData',1:samples,'CData',

mapped/max(max(mapped)), [-1 1]);

The table below shows the realtime.m script code from the examples \ matlab folder, which

implements the data processing described above. In the reference section of this tutorial, you

can find a description of all the properties and methods of the DataLogger class.

Table 10: An example MATLAB script for real-time processing of ADC data

filename = mfilename('fullpath');

app_path = fileparts(filename);

asm_path = fullfile(app_path,'..\..\x64\PhotoSoundClasses.dll');

asm = NET.addAssembly(asm_path);

dev = PhotoSoundClasses.DeviceManager;

disp('Connecting...');

addlistener(dev,'OnError',@onerror);

dev.Connect;

while ~dev.Connected && ~dev.ConnectFailure

 pause(0.1);

end

if dev.Connected

 disp('Successfully connected to device');

 image = [];

 if dev.Devices(1).SensorsMapLoaded

 fig = figure('Name','Plot data example');

 set(gca,'nextplot','replacechildren','YDir','reverse');

 chmap = double(dev.Devices(1).ChannelsMap)+1;

 logger = dev.CreateLogger('RealTime',1);

 logger.DevicesMask = 1;

 logger.LimitLoggingTime = false;

 logger.LimitNumFrames = false;

 FrameBuffer =

NET.createArray('System.Int16',dev.MaxSamplesToCapture*dev.MaxChannelsToCap

ture);

 logger.StartLoggingToMemory(true);

 while isvalid(fig)

[valid,channels,samples,frame_num,trig_time,trig_src,sample_rate] =

logger.GetFrame(FrameBuffer,false);

 if valid

 tmpData = single(FrameBuffer);

 frame =

reshape(tmpData(1:(channels*samples)),samples,channels);

 mapped = frame(:,chmap);

 xlim([0 channels])

 ylim([0 samples])

 colorbar

 xlabel('Channels')

 ylabel('Samples')

 if isempty(image)

 image =

imagesc('XData',1:channels,'YData',1:samples,'CData',

mapped/max(max(mapped)), [-1 1]);

 else

 set(image,'CData',mapped/max(max(mapped)));

 end

 end

 pause(0.1);

 end

 else

 disp('Sensors map was not assigned!');

 end

else

 disp('Failed to connect to device');

end

dev.Disconnect;

fprintf('\nDisconnected\n');

Real-time data processing in LabVIEW

Data processing in real time in the Labview environment is discussed below using the

example of building a sonogram. As a result of processing, the user can see a video image on the

screen displaying information about the signal in the sensors of the connected ultrasound sensor.

Receiving ADC data for processing is carried out using the DataLogger class. Instances of this

class (data loggers) are created by the user using the CreateLogger method of the

DeviceManager as shown in the figure below.

Figure 17: Creating and Configuring a Data Logger in LabVIEW

Call the CreateLogger method only after connecting to devices, otherwise the method

returns an empty reference. The method returns a reference to the created data logger, and its

arguments are the name of the created data logger and the length of the queue when writing to

memory. The name is used to save the settings of the recorder in the configuration file. The

queue length is measured in ADC data frames and can be 1 or more. For a queue with losses, as

a rule, 1 is sufficient, and for queues without losses, this value should be selected experimentally

so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, which determine the duration

of data entry and the device from which the data is read. After that, you can start writing ADC

data to the memory queue using the StartLoggingToMemory(LossyQueue) method, where

LossyQueue = true for lossy queues (Figure 17).

Before retrieving data from the queue, you need to prepare a buffer for them in memory.

The amount of allocated memory can be set to the maximum, and then the actual amount of

data can be determined (Figure 18).

Figure 18: Preparing to process data in LabVIEW

The GetFrame method is directly involved in retrieving data from memory. The input

arguments of the method are the allocated data buffer in memory and the sign of frame

transposition. If it is true, then the first index (row) specifies the sample number (time), and the

second (column) specifies the channel number. Otherwise, the line defines the channel, and the

column defines the time. When called, the method expects data and, if the timeout has not

expired, then it returns valid = true and fills the rest of the output arguments with the parameters

of the data frame. The output parameters of the data frame are described in more detail in the

reference section. The data copied to the data buffer should be limited in length according to the

output arguments FrameChannels and FrameSamples and converted to a two-dimensional array

for further processing (Figure 19).

Figure 19: Retrieving data from memory in LabVIEW

The construction of a sinogram is reduced to the permutation of the data in accordance with

the channel map. The channel map is an ordered array with ADC channel numbers, the array

index corresponds to the channel number of the ultrasound sensor (Figure 18). The result of the

permutation is scaled by the range of values and displayed as an image with a specified color

palette on the screen as shown in the figure above.

The \examples\labview\ folder contains a realtime.vi example that implements the above

data processing. In the reference section of this tutorial, you can find a description of all the

properties and methods of the DataLogger class.

Real-time data processing in Visual C#

Data processing in real time in the Visual C# environment is discussed below using the

example of building a sonogram. As a result of processing, the user can see a video image on the

screen displaying information about the signal in the sensors of the connected ultrasound sensor.

Receiving ADC data for processing is carried out using the DataLogger class. Instances of this

class (data loggers) are created by the user using the CreateLogger method of the device manager

(the DeviceManager class):

logger = deviceManager.CreateLogger("RealTime",1);

Call the CreateLogger method only after connecting to devices, otherwise the method

returns an empty reference. The method returns a reference to the created data logger, and its

arguments are the name of the created data logger and the length of the queue when writing to

memory. The name is used to save the settings of the recorder in the configuration file. The

queue length is measured in ADC data frames and can be 1 or more. For a queue with losses, as

a rule, 1 is sufficient, and for queues without losses, this value should be selected experimentally

so that there are no data gaps during processing.

Next, you should set the properties of the created recorder, which determine the duration

of data entry and the device from which data is read:

logger.LimitLoggingTime = false;
logger.LimitNumFrames = false;
logger.DevicesMask = 1;

The logger starts writing ADC data to a queue in memory immediately after calling its

StartLoggingToMemory(LossyQueue) method, where LossyQueue = true for lossy queues:

logger.StartLoggingToMemory(true);

Before retrieving data from the queue, you need to allocate a buffer for them in memory.

The amount of allocated memory can be set to the maximum, and then the actual amount of

data can be determined:

frameBuffer = new short[deviceManager.MaxSamplesToCapture *
deviceManager.MaxChannelsToCapture];

The GetFrame method is directly involved in retrieving data from memory:

logger.GetFrame(frameBuffer, transposeFrame, out int frameChannles, out int
frameSamples, out uint frameNumber, out double triggerTime, out int triggerSource, out
int sampleRate)

The method input arguments are the allocated data buffer in memory frameBuffer and the

transposeFrame flag. If it is true, then the first index (row) specifies the sample number (time),

and the second (column) specifies the channel number. Otherwise, the line defines the channel,

and the column defines the time. When called, the method expects data and if the timeout has

not expired, then it returns true and fills the output arguments with the parameters of the data

frame. The output parameters of the data frame are described in more detail in the reference

section.

The construction of a sinogram is reduced to the permutation of the data in accordance with

the channel map. The channel map is an ordered array with ADC channel numbers, the array

index corresponds to the channel number of the ultrasound sensor:

int[] map = deviceManager.Devices[0].ChannelsMap;

The result of the permutation is scaled by the range of values and displayed as an image with

a specified color palette on the screen. Since data processing requires performance, the

processing code is enclosed in an unsafe block:

unsafe
{
 byte* row = (byte*)bmpData.Scan0;
 int n = 0;
 for (int f = 0; f < bmp.Height; f++)
 {

for (int w = 0; w < bmp.Width; w++)
 row[w] = (byte)Math.Round((frameBuffer[f*frameChannles+map[w]]-min)*scale);

row += stride;
 }
}

To avoid freezing of the user interface, data processing is carried out in a separate thread of

the BackgroundWorker class. The methods and properties of the DataLogger class are

ThreadSafe, but they can raise events, such as the Device Manager OnError event. If the event

handler uses graphical interface elements, then they should be accessed through the Invoke

method of these elements. Below is an example of displaying an error message using an element

of the Label type:

private void OnErrorEventHandler(object sender, MessageEventArgs e)
{
 labelFPS.Invoke((MethodInvoker) delegate { labelFPS.Text = $"{e.Source.ToString()}

error: {e.Message}"; });
}

The examples \ visual \ SdkExamples folder contains the RealTime project, which implements

the data processing described above. In the reference section of this tutorial, you can find a

description of all the properties and methods of the DataLogger class.

PhotoSoundClasses.dll Class Library Reference

Capture class

Table 1 Capture Properties and Methods

Name Type Description

Configure method
Restarts ADC data collection with parameters from

class properties

SamplesToCapture Integer, 32 bit Number of data collection counts for the ADC channel

FramesPerPacket Integer, 32 bit Number of ADC data frames in one data bus package

DecimationFactor Integer, 32 bit ADC thinning factor

WaitTrigger Boolean
Sign of waiting for trigger event before data collection

starts

EnabledAdcMask Unsigned, 32 bit ADC mask allowed to collect data

AutoUpdate Boolean
A mark of automatic transfer of settings to the device

when the class properties change

Configure

The Configure method of the Capture class disables the collection of ADC data, then transfers

the settings calculated from the properties of the Capture class to the device via the system bus,

and then enables the collection of ADC data again. The method also sets the AutoUpdate

property of the Capture class to true.

SamplesToCapture

 The SamplesToCapture property of the Capture class sets the number of data samples per

ADC channel, which are written to the data frame buffer in the device after the acquisition is

started, and then transferred to the PC via the system bus. The maximum number of samples

depends on the size of the device framebuffer. To find out the maximum number of samples for

a specific device, you need to read the value of the MaxSamples property of the corresponding

instance of the Device class.

FramesPerPacket

The FramesPerPacket property of the Capture class specifies the number of ADC data frames

in one packet transmitted over the system data bus. Since the PC interrupt system has a limited

frequency of operation, the ADC data frames are combined into a packet to reduce the interrupt

frequency. This allows you to increase the data transfer rate up to the bandwidth of the system

bus. On the other hand, the frequency of receiving frames by the user program is reduced by

FramesPerPacket times. This can result in too low the refresh rate on the graph if the acquisition

is triggered by a trigger event with a low repetition rate. Therefore, in such cases, the

FramesPerPacket value should be set equal to 1. In other cases, FramesPerPacket can be left

equal to 10.

DecimationFactor

 The DecimationFactor property of the Capture class controls the decimation of ADC data

samples. If it is equal to 1, then the samples are written to the device frame buffer without gaps.

If DecimationFactor = 2, then count 1 is written, then skip recording, then count 3 is written, etc.

If DecimationFactor = 3, then only every third sample is recorded. Thus, the sampling rate of the

output data transmitted to the PC is equal to the sampling rate of the ADC divided by the

DecimationFactor. To find out the ADC sampling rate for a specific device, you need to read the

value of the MaxSampleRate property of the corresponding instance of the Device class. This

data decimation can result in aliasing if the input bandwidth of the ADC is greater than half the

sample rate of the output data. To eliminate this effect, you can adjust the bandwidth of the ADC

low-pass filter (see description of ADC classes below).

WaitTrigger

The WaitTrigger property of the Capture class enables or disables waiting for a trigger event

before starting data collection. If waiting is disabled, then a new start of data collection follows

immediately after the end of the transfer of the previous ADC data frame from the device buffer

to the PC. If enabled, after the end of the data transfer, a trigger event is first expected and then

followed by a trigger. If the repetition rate of the trigger events is too high, then the trigger event

may occur before the end of the data transfer to the PC. In this case, the data collection will not

start, but the event counter from the trigger will be incremented, and the event skip will be

recorded. The number of missed events can be read from the LostEvents property of the Device

class.

EnabledAdcMask

The EnabledAdcMask property of the Capture class sets the ADC chips allowed for data

collection. This property is common to all devices, so the number of ADC chips is determined by

the device with the most installed chips. This number can be read from the MaxAdcPerDevice

property of the Device Manager (DeviceManager class). Each bit of EnabledAdcMask

corresponds to one ADC chip, bit 0 to chip # 1, bit 1 to chip # 2, and so on. If the bit value is 1,

then the ADC is enabled for data acquisition, otherwise it is disabled. A reduced number of ADC

chips may be required to reduce the amount of data transferred to the PC. This allows for faster

transfer times and higher trigger event repetition rates, as well as reducing the size of data files

when written to disk.

AutoUpdate

The AutoUpdate property of the Capture class enables or disables automatic transmission

of settings to the device when the properties of the Capture class are changed. If the property

value is true, then when writing a new value to any of the properties of the Capture class, the

updated settings are automatically transferred to the device. If the property value is false, then

you can assign new values to several properties of the Capture class, and then call the Configure

method, which will transfer the settings to the device and restore the AutoUpdate property to

true.

Trigger class

Table 2 Properties and methods of the Trigger class

Name Type Description

Configure method
Takes settings from class properties to a system

bus

GetInputFrequencies method
Reads from the device on the system bus the

frequency of signals at trigger inputs

TriggerOutputs
array

TriggerOutput

TriggerOutput Class Array

InputNames Massive string An array with trigger input names

SlaveDelays
Integer Array, 32

bit

Array of data acquisition start delays in relation to

the signal from the slave HDMI connector

GeneratorFrequency Double Internal generator frequency, Hz

ConnectToGenerator Boolean
Sign of permission to use an internal generator to

start data collection

InputsDelay Integer, 32 bit

Delaying the start of data collection in relation to

the signal from the selected trigger or generator

input at the clock of the ADC sampling frequency

InputsGuard Integer, 32 bit

Interval of protection against noise at the trigger

inputs in clock cycles of the ADC sampling

frequency.

EnabledInputsMask Unsigned, 32 bit Trigger input mask allowed to start data collection

InvertedInputsMask Unsigned, 32 bit Trigger input mask with negative input polarity

AutoUpdate Boolean
Sign of automatic transmission of settings to the

device when class properties change

Configure

The Configure method of the Trigger class transfers the settings calculated from the

properties of the Trigger class to the device via the system bus, and also sets the AutoUpdate

property to true. Although the Trigger class contains an array of instances of the TriggerOutput

class, settings from the properties of the TriggerOutput class are not passed to the device. To do

this, the TriggerOutput class has its own Configure method and each trigger output is configured

separately.

GetInputFrequencies

The UpdateInputFrequencies method of the Trigger class reads the signal frequencies at the

trigger inputs from the device via the system bus and returns an array of numbers with the signal

frequencies in hertz.

TriggerOutputs

The TriggerOutputs property of the Trigger class is an array of instances of the

TriggerOutputs class. The length of the array is equal to the number of trigger outputs and each

element of the array corresponds to its own trigger output.

InputNames

The InputNames property of the Trigger class is an array of strings with custom trigger input

names. Strings can contain any descriptive text for the convenience of labeling inputs.

SlaveDelays

 The SlaveDelays property of the Trigger class is an array of integers with delays in

triggering data collection for each slave. The array length is 14, the maximum number of slaves.

Array element 0 corresponds to the first slave device and element 13 to the last in the HDMI

cable chain. The delay is calibrated against the analog signal input from a single source, fed to

the ADC inputs using cables of equal length. Delay values must be between 0 and the value of

the InputsDelay property of the master.

GeneratorFrequency

The GeneratorFrequency property of the Trigger class sets the frequency of the internal

oscillator in hertz. The internal oscillator can serve as a trigger signal source for both triggering

data acquisition and for any of the trigger outputs.

ConnectToGenerator

The ConnectToGenerator property of the Trigger class enables or disables the use of an

internal generator to trigger data collection. To start collecting data from the generator, you must

also enable waiting for the trigger event (the WaitTrigger property of the Capture class).

InputsDelay

The InputsDelay property of the Trigger class sets the delay in starting data acquisition in

relation to the trigger signal in ADC sampling clock cycles. The trigger signal can come from one

or more trigger inputs or from an internal oscillator.

InputsGuard

The InputsGuard property of the Trigger class sets the noise protection interval at the trigger

inputs in ADC sampling clock cycles. The trigger event is latched on the rising edge of the trigger

signal for positive signal polarity, or on the falling edge for negative polarity. Pulse noise at the

trigger input can cause multiple edges to be detected. Although the acquisition will start on the

first edge, the remaining edges can lead to incorrect trigger event counts and a false number of

trigger events to be missed.

EnabledInputsMask

The EnabledInputsMask property of the Trigger class specifies the trigger inputs allowed to

start data collection. Each bit of EnabledInputsMask corresponds to one trigger input, bit 0 to

input # 1, bit 1 to input # 2, and so on. If the bit value is 1, then the signal from the trigger input

starts data collection, if 0 - then no. If multiple inputs are allowed to be triggered, then data

collection will be triggered by a signal from any of these inputs. The number of the input, on the

signal from which the data collection was started, is memorized by the device and transmitted

to the PC in the ADC data frame. To start collecting data from a trigger input, you must also enable

waiting for a trigger event (the WaitTrigger property of the Capture class).

InvertedInputsMask

The InvertedInputsMask property of the Trigger class specifies the trigger inputs with

negative polarity of the input signal. Each bit of InvertedInputsMask corresponds to one trigger

input, bit 0 - input # 1, bit 1 - input # 2, etc. If the bit value is 1, then the trigger input has a

negative polarity of the input signal, if 0 - then positive.

AutoUpdate

The AutoUpdate property of the Trigger class enables or disables automatic transmission of

settings to the device when the properties of the Trigger class are changed. If the property value

is true, then when writing a new value to any of the property of the Trigger class, the updated

settings are automatically transferred to the device. If the property value is false, then you can

assign new values to several properties of the Trigger class, and then call the Configure method,

which will transfer the settings to the device and restore the AutoUpdate property to true.

TriggerOutput class

Table 3: TriggerOutput class properties and methods

Name Type Description

Configure method
Takes settings from class properties to a system

bus

PulseWidth Double
The duration of the trigger release in

microseconds

Delay Double Signal delay at trigger output in microseconds

SourcesMask Unsigned, 32 bit Trigger input mask connected to trigger exit

ConnectToGenerator Boolean
Sign of an internal generator connecting to the

trigger exit

Enable Boolean Signal resolution sign at trigger input

InvertInputsDelay Boolean
Sign of negative polarity of the signal at the exit of

the trigger

AutoUpdate Boolean
A sign of automatic transfer of settings to the

device when the class properties change

Configure

The Configure method of the TriggerOutput class transfers the settings calculated from the

properties of the TriggerOutput class to the device via the system bus, and also sets the

AutoUpdate property to true.

PulseWidth

The PulseWidth property of the TriggerOutput class sets the pulse width at the trigger

output in microseconds. The pulse duration should not exceed the pulse repetition period at the

trigger output.

Delay

The Delay property of the TriggerOutput class sets the delay of the signal at the trigger

output in relation to the signal at the connected trigger input or to the signal from the internal

generator in microseconds.

SourcesMask

The SourcesMask property of the TriggerOutput class determines which trigger inputs are

connected to the trigger's output. Each bit of the SourcesMask corresponds to one trigger input,

bit 0 to input # 1, bit 1 to input # 2, and so on. If the bit value is 1, then the trigger input is

connected to the trigger output, otherwise it is not connected. If several inputs are connected to

the output, then the output signal is a logical OR function of signals from the trigger inputs.

ConnectToGenerator

The ConnectToGenerator property of the TriggerOutput class connects or disables the

internal generator to the trigger output. The internal oscillator can be connected in conjunction

with one or more trigger inputs. In this case, the signal at the trigger output is a logical OR

function of signals from the trigger inputs.

Enable

The Enable property of the TriggerOutput class enables or disables the pulse signal at the

trigger output.

Invert

The Invert property of the TriggerOutput class determines the polarity of the signal at the

trigger output. If it is true, then the signal polarity is negative, if false – positive.

AutoUpdate

 The AutoUpdate property of the TriggerOutput class enables or disables automatic

transmission of settings to the device when the properties of the Trigger class are changed. If the

property value is true, then when writing a new value to any of the property of the Trigger class,

the updated settings are automatically transferred to the device. If the property value is false,

then you can assign new values to several properties of the Trigger class, and then call the

Configure method, which will transfer the settings to the device and restore the AutoUpdate

property to true.

DataLogger class

Table 4: DataLogger class properties and methods

Name Type Description

Configure method
Calls for OnPropertyChanged device manager

DeviceManager

StartLoggingToFile method Starts recording data in a file

StartLoggingToMemory method Launches memory record

StopLogging method Stops recording data

GetFrame method Extracts ADC data frame from memory queue

OnStartLogging event Event is called when you start recording data

OnStopLogging event Event is triggered when data records stop

LimitNumFrames Boolean Sign of limiting the number of frames recorded

LimitLoggingTime Boolean Sign of time limit

LimitFileSize Boolean Sign of limiting the size of the data file

DataFolder String Full way to the data file folder

DevicesMask
Unsigned,

32 bit

A mask of devices whose data is recorded in

memory or file

MaxLoggedFramesInputsDelay
Integer,

32 bit

Maximum number of recorded data frames

MaxFileSize
Integer,

32 bit

Maximum data file size in megabytes

LoggingTimeout
Integer,

32 bit

Maximum time to write in a file or memory in

seconds

Logging Boolean Sign of active data recording

Progress
Integer,

32 bit

Percentage data record progress

NumLoggedFrames
Integer,

32 bit

Current number of recorded data frames

LoggingTime Double Current memory or file time

FileSize Double Current data file size in megabytes

AutoUpdate Boolean
A sign of automatic transfer of settings to the

device when the class properties change

Configure

The Configure method for the DataLogger class does nothing and is reserved for future

reference.

StartLoggingToFile

The StartLoggingToFile(FileName) method of the DataLogger class starts writing ADC data

to a file. The FileName argument of type String passes the name of the file without the extension

and without the file path. The method returns true if recording started without errors.

StartLoggingToMemory

 The StartLoggingToMemory(LossyQueue) method of the DataLogger class starts writing

ADC data to a queue in memory. A LossyQueue of type Boolean indicates to create a lossy queue,

otherwise a lossless queue will be created. The queue length is specified when you instantiate

the DataLogger class in the CreateLogger method of the DeviceManager. The method returns

true if recording started without errors.

StopLogging

The StopLoggin method of the DataLogger class stops writing ADC data to a file or memory.

Since it takes some time to complete writing to the file, you should wait until the end of writing

by checking the Logging flag of the DataLogger class or wait for the OnStopLogging event of the

DataLogger class.

GetFrame

The GetFrame(FrameBuffer, TransposeFrame, FrameChannels, FrameSamples,

FrameNumber, TriggerTime, TriggerSource, SampleRate) method of the DataLogger class waits

for one ADC data frame, fetches it from the queue in memory, and copies it to the provided

FrameBuffer. The TransposeFrame argument must be true if the two-dimensional data array is

to have row feeds (first index) and column-wise channels, and must be false if the two-

dimensional data array must have row feeds and column feeds. The rest of the arguments are

links for receiving the parameters of the data frame: FrameChannels - the number of ADC

channels in the frame, FrameSamples - the number of ADC samples in the frame, FrameNumber

- the sequence number of the frame, TriggerTime - the countdown of the trigger event for this

frame in milliseconds, SampleRate – the sampling rate of the frame data in hertz. The method

returns true if the data was retrieved from the queue successfully and false if the data timed out

the frame.

OnStartLogging

The OnStartLogging event of the DataLogger class is called immediately after the successful

start of writing data to a file or memory. The event handler must have standard arguments of

type object and EventArgs.

OnStopLogging

The OnStopLogging event of the DataLogger class is called upon automatic or forced

completion of writing data to a file or memory. The event handler must have standard arguments

of type object and EventArgs.

LimitNumFrames

The LimitNumFrames property of the DataLogger class enables or disables automatic

stopping of data writing to a file or memory if the number of ADC data frames written is equal to

the maximum value set by the MaxLoggedFrames property of the DataLogger class.

LimitLoggingTime

The LimitLoggingTime property of the DataLogger class enables or disables automatic

stopping of data logging to a file or memory if the logging time exceeds the maximum value set

by the LoggingTimeout t property of the DataLogger class.

LimitFileSize

The LimitFileSize property of the DataLogger class enables or disables automatic stopping of

writing data to a file or memory if the file size has exceeded the maximum value set by the

MaxFileSize property of the DataLogger class.

DataFolder

The DataFolder property of the DataLogger class specifies the full path to the folder where

the logged data files are stored.

DevicesMask

The DevicesMask property of the DataLogger class defines the devices from which data is

written to a file or memory. Each DevicesMask bit corresponds to one device, bit 0 - to a device

with Id = 0, bit 1 - to a device with Id = 1, etc. If the bit value is 1, then data from the device is

written, otherwise it is not.

MaxLoggedFrames

The MaxLoggedFrames property of the DataLogger class specifies the maximum number of

ADC data frames to write. To stop recording when the maximum number of recorded frames is

exceeded, you must also set the LimitNumFrames property of the DataLogger class to true.

MaxFileSize

The MaxFileSize property of the DataLogger class specifies the maximum size of a data file

in megabytes. To stop recording when the maximum file size is exceeded, you must also set the

LimitFileSize property of the DataLogger class to true.

LoggingTimeout

The LoggingTimeout property of the DataLogger class specifies the maximum time for

writing data to a file or memory in seconds. To stop recording when the maximum recording time

is exceeded, you must also set the LimitLoggingTime property of the DataLogger class to true.

Logging

The Logging property of the DataLogger class indicates the state of the data log and is a read-

only property. If the property value is true, then the recording is made, if false – then no.

Progress

The Progress property of the DataLogger class shows the current progress of writing data as

a percentage and is a read-only property. The recording progress is calculated either to end the

recording by exceeding the number of frames, or by exceeding the file size. In this case, the

progress value is displayed for the condition that will be fulfilled earlier. Stopping recording at

least one of the conditions must be allowed by the LimitFileSize or LimitNumFrames properties

of the DataLogger class.

NumLoggedFrames

The NumLoggedFrames property of the DataLogger class shows the current number of ADC

data frames written to file or memory and is a read-only property.

LoggingTime

The LoggingTime property of the DataLogger class shows the current time in seconds since

the start of writing data to a file or memory and is a read-only property.

FileSize

The FileSize property of the DataLogger class shows the current size of the data file in

megabytes and is a read-only property.

AutoUpdate

The AutoUpdate property of the DataLogger class enables or disables notification through

the Device Manager OnPropertyChanged event when the properties of the DataLogger class

change. Before starting to batch change the properties of the DataLogger class, this property can

be set to false, and when finished, true. In this case, the OnPropertyChanged event will be called

only once.

Class AFE5818

Table 5: Properties and Methods of AFE5818 class

Name Type Description

Configure method
Takes settings from class properties to a system

bus

ConfiguredDevicesMask Unsigned, 32 bit Device mask for configuration

ConfiguredAdcMask Unsigned, 32 bit Mask of ADC chips for configuration

Vca1EqualsVca2 Boolean
If true, then the settings for VCA #2 are taken

from the Vca1 property, if false, then from Vca2

Vca1, Vca2
Class

AFE5818Vca

References to class AFE5818Vca with settings for

VCA #1 and for VCA #2

AutoUpdate Boolean
Sign of automatic transmission of settings to the

device when class properties change

Configure

The Configure method of the AFE5818 class transfers the settings calculated from the

properties of the AFE5818 class to the device via the system bus, and also sets the AutoUpdate

property to true.

ConfiguredDevicesMask

The ConfiguredDevicesMask property of the AFE5818 class sets the device mask for

configuration. Each bit of the mask corresponds to one device: bit 0 - to a device with Id = 0, bit

1 - to a device with Id = 1, etc., where Id is an identifier of a device on the system bus. When

changing the mask, the settings are not automatically transferred to the device, but the new

mask is taken into account when changing other properties. So, if any property is assigned the

same value, then if the mask has not been changed, then the settings will not be transferred to

the device, and if they were changed, they will be. The number of connected devices can be read

from the DevicesCount property of the device manager.

ConfiguredAdcMask

The ConfiguredAdcMask property of the AFE5818 class sets the mask of the ADC chips for

configuration. Each bit of the mask corresponds to one chip: bit 0 - chip #1, bit 1 - chip #2, etc.

When changing the mask, the settings are not automatically transferred to the device, but the

new mask is taken into account when changing other properties. So, if any property is assigned

the same value, then if the mask has not been changed, then the settings will not be transferred

to the device, and if it was changed, then they will be transferred to the device.

Vca1EqualsVca2

The Vca1EqualsVca2 property of the AFE5818 class determines whether the settings for VCA

#1 and VCA #2 are the same. If the property value is true, then the settings for VCA #2 are taken

from the Vca1 property of the AFE5818 class, if false, then from Vca2.

AutoUpdate

The AutoUpdate property of the AFE5818 class enables or disables automatic transmission

of settings to the device when the properties of the AFE5818 class are changed. If the property

value is true, then when writing a new value to any of the properties of the AFE5818 class, the

updated settings are automatically transferred to the device. If the property value is false, then

you can assign new values to several properties of the AFE5818 class, and then call the Configure

method, which will transfer the settings to the device and restore the AutoUpdate property to

true.

Vca1, Vca2

 The Vca1 and Vca2 properties of the AFE5818 class are references to the AFE5818Vca

class. This class is described below. Changing the properties of the AFE5818Vca class will

automatically call the Configure method of the AFE5818 class if the AutoUpdate property of the

AFE5818 class is true.

Table 6: Properties and Methods of AFE5818Vca class

Name Type Description

HpfCutoffDivided Boolean
If true, the cutoff frequency of the LNA block's high-pass

filter is reduced by three times.

LowNoiseMode Boolean Flag of VCA Low Noise Mode Enabled

PgaHpfDisabled Boolean Flag of PGA block high pass filter disabled

LnaHpfDisabled Boolean Flag of LNA High Pass Filter Disabled

PgaClampEnabled Boolean Flag of PGA voltage limiter enabled

F5MHzLpfEnabled Boolean Flag of Low pass filter Enabled

TgcAttEnabled Boolean Flag of Connecting the attenuator in the TGC block

PowerMode Enum VCA power consumption mode

HpfCutoffFreq Enum High Pass Filter Cutoff Frequency

LpfCutoffFreq Enum Low Pass Filter Cutoff Frequency

TgcAttenuation Enum Attenuator gain in TGC unit

LnaGlobalGain Enum LNA block gain

PgaGain Enum PGA block gain

HpfCutoffDivided

 The HpfCutoffDivided property of the AFE5818Vc class enables (true) or disables (false) the

LNA block's high-pass filter cutoff frequency to be reduced threefold.

LowNoiseMode

The LowNoiseMode property of the AFE5818Vc class enables (true) or disables (false) the

VCA low noise mode for high impedance sensors.

PgaHpfDisabled

The PgaHpfDisabled property of the AFE5818Vc class enables (false) or disables (true) the

high-pass filter of the PGA.

LnaHpfDisabled

The LnaHpfDisabled property of the AFE5818Vc class enables (false) or disables (true) the

high pass filter of the LNA block.

PgaClampEnabled

 The PgaClampEnabled property of the AFE5818Vc class enables (true) or disables (false) the

voltage limiter in the PGA.

F5MHzLpfEnabled

The F5MHzLpfEnabled property of the AFE5818Vc class enables (true) or disables (false) a

first-order low-pass filter with a 5 MHz bandwidth.

TgcAttEnabled

The TgcAttEnabled property of the AFE5818Vc class enables (true) or disables (false) the

attenuator in the TGC block.

PowerMode

The PowerMode property of the AFE5818Vca class determines the power consumption

mode of the VCA unit, is an enumerable property and can be assigned three values: LowNoise,

LowPower, MediumPower.

HpfCutoffFreq

The HpfCutoffFreq property of the AFE5818Vca class defines the cutoff frequency of the high

pass filter, is an enumerable property and can be assigned the following values: _50_kHz,

_100_kHz, _150_kHz, _200_kHz.

LpfCutoffFreq

The LpfCutoffFreq property of the AFE5818Vca class defines the cutoff frequency of the low-

pass filter, is an enumerable property and can be assigned the following values: _10_MHz,

_15_MHz, _20_MHz, _30_MHz, _35_MHz, _50_MHz.

TgcAttenuation

The TgcAttenuation property of the AFE5818Vca class sets the gain of the attenuator in the

TGC block, is an enumerable property and can be assigned the following values: _0_dB, _6_dB,

_12_dB, _18_dB, _24_dB, _30_dB, _36_dB.

LnaGlobalGain

 The LnaGlobalGain property of the AFE5818Vca class defines the gain of the LNA block, is

an enumerable property and can be assigned the following values: _12_dB, _18_dB, _24_dB.

PgaGain

The PgaGain property of the AFE5818Vca class defines the gain of the PGA block, is an

enumerable property and can be assigned the following values: _24_dB, _30_dB.

Class AFE5832

Table 7: AFE5832 Class Properties and Methods

Name Type Description

Configure method
Transfers settings from class properties to a

device via the system bus

ConfiguredDevicesMask Unsigned, 32 bit Device mask for configuration

ConfiguredAdcMask Unsigned, 32 bit Mask of ADC chips for configuration

EnableAttenuatorHpf Boolean
Sign of connecting the high-pass filter of the

attenuator

AttenuatorHpfCorner Enum Attenuator high pass filter slope

OddEqualEven Boolean
If true, then the settings for Even die are taken

from the Odd property, if false, then from Even

Odd, Even
Class

AFE5832Die

References to the AFE5832Die class with settings

for Odd die and for Even die

AutoUpdate Boolean
Sign of automatic transmission of settings to the

device when class properties change

Configure

The Configure method of the AFE5832 class transfers the settings calculated from the

properties of the AFE5832 class to the device via the system bus, and also sets the AutoUpdate

property to true.

ConfiguredDevicesMask

The ConfiguredDevicesMask property of the AFE5832 class sets the device mask for

configuration. Each bit of the mask corresponds to one device: bit 0 - to a device with Id = 0, bit

1 - to a device with Id = 1, etc., where Id is an identifier of a device on the system bus. When

changing the mask, the settings are not automatically transferred to the device, but the new

mask is taken into account when changing other properties. So if any property is assigned the

same value, then if the mask has not been changed, then the settings will not be transferred to

the device, and if they were changed, they will be. The number of connected devices can be read

from the DevicesCount property of the Device Manager.

ConfiguredAdcMask

The ConfiguredAdcMask property of the AFE5832 class sets the mask of the ADC chips for

configuration. Each bit of the mask corresponds to one chip: bit 0 - chip # 1, bit 1 - chip # 2, etc.

When changing the mask, the settings are not automatically transferred to the device, but the

new mask is taken into account when changing other properties. So if any property is assigned

the same value, then if the mask has not been changed, then the settings will not be transferred

to the device, and if it was changed, they will be.

EnableAttenuatorHpf

The EnableAttenuatorHpf property of the AFE5832 class enables (true) or disables (false)

the high-pass filter of the attenuator block.

AttenuatorHpfCorner

The AttenuatorHpfCorner property of the AFE5832 class determines the slope of the high-

pass filter of the attenuator, is an enumerable property and can be assigned the following values:

С2, С3, С4, C5, C6, C7, C8, C9, C10.

OddEqualEven

The OddEqualEven property of the AFE5832 class determines whether the Even die and Odd

die settings are the same. If the property value is true, then the settings for Even die are taken

from the Odd property of the AFE5832 class, if false, then from Even.

AutoUpdate

The AutoUpdate property of the AFE5832 class enables or disables automatic transmission

of settings to the device when the properties of the AFE5832 class are changed. If the property

value is true, then when writing a new value to any of the properties of the AFE5832 class, the

updated settings are automatically transferred to the device. If the property value is false, then

you can assign new values to several properties of the AFE5832 class, and then call the Configure

method, which will transfer the settings to the device and restore the AutoUpdate property to

true.

Odd, Even

The Odd and Even properties of the AFE5832 class are references to the AFE5832Die class.

This class is described below. When changing the properties of the AFE5832Die class, the

Configure method of the AFE5832 class will be automatically called if the AutoUpdate property

of the AFE5832 class is true.

Table 8: AFE5832Die Class Properties and Methods

Name Type Description

LpfCutoffFreq Enum LNA low pass filter cutoff frequency

HpfCutoffFreq Enum LNA High Pass Filter Cutoff Frequency

DtgcGain Double Digital TGC gain, dB

EnableLnaHpf Boolean Sign of connecting the high-pass filter of the LNA unit

LowPowerMode Boolean
Flag of VCA unit low power consumption mode

activation

EnableDtgcAttenuator Boolean Flag of connecting the attenuator in the digital TGC block

LpfCutoffFreq

 The LpfCutoffFreq property of the AFE5832Die class defines the cutoff frequency of the LNA

block low pass filter, is an enumerable property and can be assigned the following values:

_10_MHz, _15_MHz, _20_MHz, _30_MHz. If the low power mode is enabled (the

LowPowerMode property of the AFE5832Die class is true), then the frequency values must be

divided by two.

HpfCutoffFreq

The HpfCutoffFreq property of the AFE5832Die class defines the cutoff frequency of the LNA

block high pass filter, is an enumerable property and can be assigned the following values:

_75_kHz, _150_kH.

DtgcGain

The DtgcGain property of the AFE5832Die class defines the digital TGC gain in decibels.

EnableLnaHpf

The EnableLnaHpf property of the AFE5832Die class enables (true) or disables (false) the

high-pass filter in the LNA block.

LowPowerMode

The LowPowerMode property of the AFE5832Die class enables (true) or disables (false) the

low power mode of the VCA.

EnableDtgcAttenuator

The EnableDtgcAttenuator property of the AFE5832Die class enables (true) or disables

(false) the attenuator in the digital TGC block.

Class AFE5832LP

Table 9 AFE5832LP Class Properties and Methods

Name Type Description

Configure Method
Transfers settings from class properties to a

device via the system bus

ConfiguredDevicesMask Unsigned, 32 bit Device mask for configuration

ConfiguredAdcMask Unsigned, 32 bit Mask of ADC chips for configuration

HpfCornerFreq Enum Attenuator high pass filter slope

LpfCutoffFreqs Enum Low pass filter cutoff frequency

PgaGainOddEqualEven Enum PGA gain

LnaGainOdd, Even Enum LNA gain

LowPowerMode Boolean Flag of low power consumption mode

LowLatencyEnable Boolean
Flag of the mode with low signal delay and

disabled digital postprocessing

Attenuator Double
Digitally controlled attenuator attenuation range

0 to 36 dB

AutoUpdate Boolean
Flag for automatic transmission of settings to the

device when class properties are changed

Configure

The Configure method of the AFE5832LP class transfers the settings calculated from the

properties of the AFE5832LP class to the device via the system bus, and also sets the AutoUpdate

property to true.

ConfiguredDevicesMask

The ConfiguredDevicesMask property of the AFE5832LP class sets the device mask for

configuration. Each bit of the mask corresponds to one device: bit 0 - to a device with Id = 0, bit

1 - to a device with Id = 1, etc., where Id is an identifier of a device on the system bus. When

changing the mask, the settings are not automatically transferred to the device, but the new

mask is taken into account when changing other properties. So if any property is assigned the

same value, then if the mask has not been changed, then the settings will not be transferred to

the device, and if they were changed, they will be. The number of connected devices can be read

from the DevicesCount property of the Device Manager.

ConfiguredAdcMask

The ConfiguredAdcMask property of the AFE5832LP class sets the mask of the ADC chips for

configuration. Each bit of the mask corresponds to one chip: bit 0 - chip # 1, bit 1 - chip # 2, etc.

When changing the mask, the settings are not automatically transferred to the device, but the

new mask is taken into account when changing other properties. So, if any property is assigned

the same value, then if the mask has not been changed, then the settings will not be transferred

to the device, and if it was changed, they will be.

HpfCornerFreq

The HpfCornerFreq property of the AFE5832LP class determines the steepness of the high

pass filter, is an enumerated property, and can be assigned values: _100_kHz, _110_kHz,

_120_kHz, _130_kHz, _140_kHz, _150_kHz, _160_kHz, _170_kHz, _20_kHz, _30_kHz, _40_kHz,

_50_kHz, _60_kHz, _70_kHz, _80_kHz, _90_kHz, _270_kHz, _280_kH, _290_kHz, _300_kHz,

_310_kHz, _180_kHz, _190_kHz, _200_kHz, _210_kHz, _220_kHz, _230_kHz, _240_kHz.

LpfCutoffFreq

The LpfCutoffFreq property of the AFE5832LP class determines the cutoff frequency of the

low-pass filter of the block, is an enumerated property and can be assigned values: _10_MHz,

_15_MHz, _20_MHz, _25_MHz. If low power mode is enabled (the LowPowerMode property

of the AFE5832LP class is true), then the _25_MHz value will correspond to a frequency of 20

MHz, and the remaining values will correspond to the frequencies specified in them.

PgaGain

The PgaGain property of the AFE5832LP class determines the gain of the PGA block, is an

enumerated property, and can be assigned values: _21_dB, _24_dB, _27_dB.

LnaGain

The LnaGain property of the AFE5832LP class determines the gain of the LNA block, is an

enumerated property, and can be assigned values: _15_dB, _18_dB, _21_dB.

LowPowerMode

The LowPowerMode property of the AFE5832LP class enables (true) or disables (false) the

low power mode.

LowLatencyEnable

The LowLatencyEnable property of the AFE5832LP class enables (true) or disables (false) the

low latency mode with digital processing disabled.

Attenuator

The Attenuator property of the AFE5832LP class sets the attenuation factor of the digital

attenuator in decibels in the range from 0 to 36 in 0.125 dB steps.

AutoUpdate

The AutoUpdate property of the AFE5832LP class enables or disables automatic transmission

of settings to the device when the properties of th AFE5832LP class are changed. If the property

value is true, then when writing a new value to any of the properties of the AFE5832LP class, the

updated settings are automatically transferred to the device. If the property value is false, then

you can assign new values to several properties of the AFE5832LP class, and then call the

Configure method, which will transfer the settings to the device and restore the AutoUpdate

property to true.

Data file format

ADC data is saved in a binary RAW file. The file consists of a file header (

Table 10) and N ADC data frames. The number of data frames is written in the file header. Each

frame also contains a header and data (Table 11). Each frame corresponds to one device, the

frames are written to the file strictly sequentially from the device with a lower serial number to

the device with a higher serial number. The serial number of the device is determined by its

position in the chain of devices connected by HDMI cable. The master has sequence number 0

and the last sequence number has the last connected device. To determine which device a

particular frame belongs to, analyze the Boards Mask field in the file header.

The data in each frame is arranged sequentially - first the 1st sample of channel # 1, then the

1st sample of channel # 2 and so on until the last channel, then the 2nd sample of channel # 1,

then the 2nd sample of channel # 2 and so on until the last channel. Then the sequence is

repeated until the last count of the last channel. The file header contains the total number of

channels recorded in the file, and the same number of data samples per ADC channel for all data

frames. The frame header indicates the number of channels for the corresponding device. The

number of channels is determined by the number of allowed ADCs and the number of channels

per ADC. In order to determine which channel belongs to which ADC, you should analyze the

mask of allowed ADCs ADC Mask for the current frame. Channels are always arranged in

ascending order by ADC numbers.

Table 10 Data file header format

Field Type Description

Format version Double File version

Number of frames Integer, 32 bit File format version

Header length Integer, 32 bit File header size in bytes

Frame length Integer, 32 bit Data frame size in bytes

Sample rate Integer, 32 bit The frequency of data sampling in Hertz

Number of channels Integer, 32 bit Number of ADC channels in the file

Number of samples Integer, 32 bit
Number of data counts on the ADC channel in each

frame

Number of boards Integer,32 bit
The number of devices, data from which are

recorded in the file

Boards mask
Unsigned,

32 bit

The device mask is in order from the master (bit #0)

to the last slave (bit #31). If data from the device

with the sequence number N, starting from the

master device with the number 0, are written to the

file, then the N bit is 1, otherwise 0

Table 11 Data Frame Format

Field Type Description

Number of channels Integer, 32 bit Number of ADC channels in a frame

Number of samples Integer, 32 bit Number of samples per channel

Sample rate Integer, 32 bit Data sampling rate in Hz

Trigger source Integer, 32 bit

Frame data trigger input mask. Bit 0 of the mask

corresponds to input #1, bit 1 of the mask – to input

#2, and so on.

Trigger time Double
Timing of the frame data trigger signal in

milliseconds

Frame number
Unsigned,

32 bit

Numeric frame label

ADC Mask
Unsigned,

32 bit

Mask of allowed ADC chips. Each bit of the mask

corresponds to one ADC chip, bit 0 to chip #1, bit 1

to chip #2, and so on. If the bit value is 1, then the

ADC is allowed to collect data, otherwise it is

prohibited.

ADC data
Integer Array,

16 bit

ADC data array, data are arranged sequentially by

channels: first, all channels for counting #1, then all

channels for counting #2, etc.

